Functional renormalization group of the nonlinear sigma model and the O(N) universality class

被引:22
|
作者
Flore, Raphael [1 ]
Wipf, Andreas [1 ]
Zanusso, Omar [2 ]
机构
[1] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
来源
PHYSICAL REVIEW D | 2013年 / 87卷 / 06期
关键词
BACKGROUND-FIELD METHOD; EVOLUTION EQUATION; CRITICAL EXPONENTS; CRITICAL-BEHAVIOR; DIMENSIONS;
D O I
10.1103/PhysRevD.87.065019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the renormalization group flow of the O(N) nonlinear sigma model in arbitrary dimensions. The effective action of the model is truncated to fourth order in the derivative expansion, and the flow is obtained by combining the nonperturbative renormalization group and the background field method. We investigate the flow in three dimensions and analyze the phase structure for arbitrary N. While a nontrivial fixed point is present in a reduced truncation of the effective action and has critical properties that can be related to the well-known features of the O(N) universality class, one of the fourth-order operators destabilizes this fixed point and has to be discussed carefully. The results about the renormalization flow of the models will serve as a reference for upcoming simulations with the Monte Carlo renormalization group. DOI: 10.1103/PhysRevD.87.065019
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Dynamic universality class of Model C from the functional renormalization group
    Mesterhazy, D.
    Stockemer, J. H.
    Palhares, L. F.
    Berges, J.
    [J]. PHYSICAL REVIEW B, 2013, 88 (17):
  • [2] ON THE RENORMALIZATION-GROUP ITERATION OF A 2-DIMENSIONAL HIERARCHICAL NONLINEAR O (N) SIGMA-MODEL
    PORDT, A
    REISZ, T
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1991, 55 (01): : 545 - 587
  • [3] The O(N) nonlinear sigma model in the functional Schrodinger picture
    Kim, DK
    Kim, CK
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (28): : 6029 - 6036
  • [4] Complex renormalization group flows for 2D nonlinear O(N) sigma models
    Meurice, Y.
    Zou, Haiyuan
    [J]. PHYSICAL REVIEW D, 2011, 83 (05):
  • [5] RENORMALIZATION OF O(N) NONLINEAR SIGMA-MODEL ON A P-ADIC FIELD
    OKADA, Y
    UBRIACO, MR
    [J]. PHYSICAL REVIEW LETTERS, 1988, 61 (17) : 1910 - 1913
  • [6] Scheme dependence and universality in the functional renormalization group
    Codello, Alessandro
    Demmel, Maximilian
    Zanusso, Omar
    [J]. PHYSICAL REVIEW D, 2014, 90 (02):
  • [7] Evidence for a novel shift-symmetric universality class from the functional renormalization group
    Laporte, Cristobal
    Locht, Nora
    Pereira, Antonio D.
    Saueressig, Frank
    [J]. PHYSICS LETTERS B, 2023, 838
  • [8] THE TWO-DIMENSIONAL O(N) NONLINEAR SIGMA-MODEL - RENORMALIZATION AND EFFECTIVE ACTIONS
    MITTER, PK
    RAMADAS, TR
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (04) : 575 - 596
  • [9] RENORMALIZATION-GROUP TREATMENT OF THE QUANTUM NONLINEAR SIGMA-MODEL
    ELSTNER, N
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1992, 87 (02): : 197 - 202
  • [10] RENORMALIZATION AND RENORMALIZATION-GROUP BEHAVIOR OF THE O(N) NON-LINEAR SIGMA-MODEL IN STOCHASTIC QUANTIZATION
    OKANO, K
    SCHULKE, L
    [J]. NUCLEAR PHYSICS B, 1988, 295 (01) : 105 - 122