DERIVATION OF BIOPHYSICAL PARAMETERS FROM FUSED REMOTE SENSING DATA

被引:0
|
作者
Thorsten, Dahms [1 ]
Babu, Dinesh Kumar [2 ]
Erik, Borg [3 ]
Marco, Schmidt [2 ]
Christopher, Conrad [1 ]
机构
[1] Univ Wurzburg, Dept Remote Sensing, Wurzburg, Germany
[2] Hsch Bochum, Campus Velbert Heiligenhaus, Heiligenhaus, Germany
[3] German Remote Sensing Data Ctr, Natl Ground Segment, Neustrelitz, Germany
关键词
STARFM; RandomForest; MODIS; LANDSAT-8; FPAR; LAI; time series; DEMMIN; LANDSAT; MODELS;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Resent launches of optical space-borne remote sensing systems with high resolution, high temporal repetition rate, and constant viewing angles (e.g.: Venus, Sentinel-2) will fortify the potential of remote sensing applications in the context of agricultural monitoring (e.g.: the derivation of biophysical parameters). The practicality of optical and/or thermal remote sensing data is often limited by tile and cloud coverage. Spatial-Temporal-Adaptive Fusion Model (e.g.: STARFM) can be used to combine data from different remote sensing sensors to overcome these limitations. In order to investigate the reliability of synthesized remote sensing data in agricultural monitoring, we evaluated the quality and integrity of predicted FPAR and LAI data on maize. In this context, we used synthesized daily LANDSAT-like data products and a RandomForest to fill possible spatial and/or temporal data gaps and to predict FPAR and LAI for the entire growing period in 2015. The evaluation of the biophysical time series was concluded using a weekly to bi-weekly ground measurements in different phenological stages of the maize plant. The quality assessment of the entire growth period revealed the high potential of synthetic remote sensing data for agricultural monitoring. The quality of the results range between R-2 = 0.68; RMSE = 0.79 (LAI) and R-2 = 0.76; RMSE = 0.12 (FPAR).
引用
收藏
页码:4374 / 4377
页数:4
相关论文
共 50 条
  • [1] Cost-effectiveness of vegetation biophysical parameters retrieval from remote sensing data
    Vuolo, F.
    D'Urso, G.
    Dini, L.
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY VIII, 2006, 6359
  • [2] Significance of landcover biophysical parameters derived from remote sensing data for environmental studies
    Zoran, M.
    Stefan, S.
    [J]. SIX INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION, 2007, 899 : 753 - 753
  • [3] Cost-effectiveness of vegetation biophysical parameters retrieval from remote sensing data
    Francesco, Vuolo
    Guido, D'Urso
    Luigi, Dini
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 1949 - +
  • [4] Estimation of errors in biophysical parameters maps derived from remote sensing data: The SPARC experiment
    Fernandez, G.
    Moreno, J.
    [J]. EARTH OBSERVATION FOR VEGETATION MONITORING AND WATER MANAGEMENT, 2006, 852 : 211 - +
  • [5] Quantitative analysis of biophysical parameters of watershed by remote sensing
    Maciel de Oliveira, Leidjane Maria
    Gico Lima Montenegro, Suzana Maria
    Dantas Antonino, Antonio Celso
    da Silva, Bernardo Barbosa
    Clemente Machado, Celia Cristina
    Galvincio, Josicleda Domiciano
    [J]. PESQUISA AGROPECUARIA BRASILEIRA, 2012, 47 (09) : 1209 - 1217
  • [6] Estimating biophysical parameters of rice with remote sensing data using support vector machines
    Yang XiaoHua
    Huang JingFeng
    Wu YaoPing
    Wang JianWen
    Wang Pei
    Wang XiaoMing
    Huete, Alfredo R.
    [J]. SCIENCE CHINA-LIFE SCIENCES, 2011, 54 (03) : 272 - 281
  • [7] Estimating biophysical parameters of rice with remote sensing data using support vector machines
    XiaoHua Yang
    JingFeng Huang
    YaoPing Wu
    JianWen Wang
    Pei Wang
    XiaoMing Wang
    Alfredo R. Huete
    [J]. Science China Life Sciences, 2011, 54 : 272 - 281
  • [8] Estimating biophysical parameters of rice with remote sensing data using support vector machines
    Alfredo R.HUETE
    [J]. Science China(Life Sciences), 2011, 54 (03) : 272 - 281
  • [9] Estimating biophysical parameters of rice with remote sensing data using support vector machines
    Alfredo R.HUETE
    [J]. Science China Life Sciences, 2011, (03) : 272 - 281
  • [10] Retrieval of forest biophysical parameters from remote sensing images with the DART model
    Pinel, V
    GastelluEtchegorry, JP
    Demarez, V
    [J]. IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 1660 - 1662