CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst

被引:273
|
作者
Purnama, H
Ressler, T
Jentoft, RE
Soerijanto, H
Schlögl, R
Schomäcker, R
机构
[1] Max Planck Inst Mol Genet, Fritz Haber Inst, Dept Inorgan Chem, D-14195 Berlin, Germany
[2] Tech Univ Berlin, Inst Chem, D-10623 Berlin, Germany
关键词
methanol-steam reforming; commercial catalyst CuO/ZnO/Al2O3; reaction kinetics; CO formation; intraparticle diffusion limitation; dilution effect; reverse water gas-shift reaction;
D O I
10.1016/j.apcata.2003.09.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A study of CO formation for steam reforming of methanol on a commercial CuO/ZnO/Al2O3 catalyst has been performed in the temperature range 230-300degreesC and at atmospheric pressure. The reaction schemes considered in this work are the methanol-steam reforming (SR) reaction and the reverse water gas-shift (rWGS) reaction. Power rate laws for the SR and reverse WGS reactions were used in a refinement of rate equations to the experiment data. For the temperature range studied the reaction order of methanol was determined under differential conversion (less than 10%) and was found to be 0.2. The integral method (partial pressure of the reactants and products measured as a function of contact time) was then applied to determine the reaction rate constants, activation energies, and pre-exponential factors for both reactions. The experimental results of CO partial pressure as a function of contact time at different reaction temperatures show very clearly that CO was formed as a consecutive product. The implications of the reaction scheme, in particular with respect to the production of CO as a secondary product, are discussed in the framework of on-board production of H-2 for fuel cell applications in automobiles. Potential chemical engineering solutions for minimizing CO production are outlined. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 50 条
  • [1] FLAME-MADE CuO/ZnO/Al2O3 CATALYST FOR METHANOL STEAM REFORMING
    Lim, Emmanuel
    Visutipol, Teeravit
    Peng, Wen
    Hotz, Nico
    [J]. PROCEEDINGS OF THE ASME 7TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2013, 2014,
  • [2] Steam reforming of dimethoxymethane, methanol and dimethyl ether on CuO–ZnO/γ-Al2O3 catalyst
    A. A. Pechenkin
    S. D. Badmaev
    V. D. Belyaev
    E. A. Paukshtis
    O. A. Stonkus
    V. A. Sobyanin
    [J]. Kinetics and Catalysis, 2017, 58 : 577 - 584
  • [3] Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol
    Didi Li
    Fang Xu
    Xuan Tang
    Sheng Dai
    Tiancheng Pu
    Xianglin Liu
    Pengfei Tian
    Fuzhen Xuan
    Zhi Xu
    Israel E. Wachs
    Minghui Zhu
    [J]. Nature Catalysis, 2022, 5 : 99 - 108
  • [4] Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol
    Li, Didi
    Xu, Fang
    Tang, Xuan
    Dai, Sheng
    Pu, Tiancheng
    Liu, Xianglin
    Tian, Pengfei
    Xuan, Fuzhen
    Xu, Zhi
    Wachs, Israel E.
    Zhu, Minghui
    [J]. NATURE CATALYSIS, 2022, 5 (02) : 99 - 108
  • [5] Steam Reforming of Dimethoxymethane, Methanol and Dimethyl Ether on CuO-ZnO/γ-Al2O3 Catalyst
    Pechenkin, A. A.
    Badmaev, S. D.
    Belyaev, V. D.
    Paukshtis, E. A.
    Stonkus, O. A.
    Sobyanin, V. A.
    [J]. KINETICS AND CATALYSIS, 2017, 58 (05) : 577 - 584
  • [6] Steam reforming of methanol over a CuO/ZnO/Al2O3 catalyst, part I: Kinetic modelling
    Sa, Sandra
    Sousa, Jose M.
    Mendes, Adelio
    [J]. CHEMICAL ENGINEERING SCIENCE, 2011, 66 (20) : 4913 - 4921
  • [7] Mechanistic aspects of the steam reforming of methanol over a CuO/ZnO/ZrO2/Al2O3 catalyst
    Breen, JP
    Meunier, FC
    Ross, JRH
    [J]. CHEMICAL COMMUNICATIONS, 1999, (22) : 2247 - 2248
  • [8] Steam reforming of methanol over a CuO/ZnO/Al2O3 catalyst part II: A carbon membrane reactor
    Sa, Sandra
    Sousa, Jose M.
    Mendes, Adelio
    [J]. CHEMICAL ENGINEERING SCIENCE, 2011, 66 (22) : 5523 - 5530
  • [9] Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst:: a kinetic analysis and strategies for suppression of CO formation
    Agrell, J
    Birgersson, H
    Boutonnet, M
    [J]. JOURNAL OF POWER SOURCES, 2002, 106 (1-2) : 249 - 257
  • [10] Statistical optimization of the composition of CuO–ZnO/Al2O3 catalysts for methanol steam reforming
    Arielle Cristina Fornari
    João Lourenço Castagnari Willimann Pimenta
    Onélia Aparecida Andreo dos Santos
    Luiz Mario de Matos Jorge
    [J]. Brazilian Journal of Chemical Engineering, 2021, 38 : 523 - 548