LoReTTA, a user-friendly tool for assembling viral genomes from PacBio sequence data

被引:2
|
作者
Al Qaffas, Ahmed [1 ]
Nichols, Jenna [2 ]
Davison, Andrew J. [2 ]
Ourahmane, Amine [1 ]
Hertel, Laura [3 ]
McVoy, Michael A. [1 ]
Camiolo, Salvatore [2 ]
机构
[1] Virginia Commonwealth Univ, Dept Pediat, Richmond, VA USA
[2] Univ Glasgow, MRC, Ctr Virus Res, Glasgow, Scotland
[3] Univ Calif San Francisco, Sch Med, Dept Pediat, Oakland, CA USA
基金
英国惠康基金; 英国医学研究理事会; 美国国家卫生研究院;
关键词
de novo assembly; viral genomics; long read assembler; PacBio;
D O I
10.1093/ve/veab042
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Long-read, single-molecule DNA sequencing technologies have triggered a revolution in genomics by enabling the determination of large, reference-quality genomes in ways that overcome some of the limitations of short-read sequencing. However, the greater length and higher error rate of the reads generated on long-read platforms make the tools used for assembling short reads unsuitable for use in data assembly and motivate the development of new approaches. We present LoReTTA (Long Read Template-Targeted Assembler), a tool designed for performing de novo assembly of long reads generated from viral genomes on the PacBio platform. LoReTTA exploits a reference genome to guide the assembly process, an approach that has been successful with short reads. The tool was designed to deal with reads originating from viral genomes, which feature high genetic variability, possible multiple isoforms, and the dominant presence of additional organisms in clinical or environmental samples. LoReTTA was tested on a range of simulated and experimental datasets and outperformed established long-read assemblers in terms of assembly contiguity and accuracy. The software runs under the Linux operating system, is designed for easy adaptation to alternative systems, and features an automatic installation pipeline that takes care of the required dependencies. A command-line version and a user-friendly graphical interface version are available under a GPLv3 license at with the manual and a test dataset.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] VIRMOTIF: A User-Friendly Tool for Viral Sequence Analysis
    Rajaei, Pedram
    Jahanian, Khadijeh Hoda
    Beheshti, Amin
    Band, Shahab S.
    Dehzangi, Abdollah
    Alinejad-Rokny, Hamid
    [J]. GENES, 2021, 12 (02)
  • [2] FERRET: A USER-FRIENDLY TOOL TO EXTRACT DATA FROM THE 1000 GENOMES PROJECT
    Limou, Sophie
    Taverner, Andrew
    Vince, Nicolas
    Gourraud, Pierre-Antoine
    Winkler, Cheryl
    [J]. HLA, 2017, 89 (06) : 426 - 427
  • [3] Ferret: a user-friendly Java']Java tool to extract data from the 1000 Genomes Project
    Limou, Sophie
    Taverner, Andrew M.
    Winkler, Cheryl A.
    [J]. BIOINFORMATICS, 2016, 32 (14) : 2224 - 2226
  • [4] CORNET: A User-Friendly Tool for Data Mining and Integration
    De Bodt, Stefanie
    Carvajal, Diana
    Hollunder, Jens
    Van den Cruyce, Joost
    Movahedi, Sara
    Inze, Dirk
    [J]. PLANT PHYSIOLOGY, 2010, 152 (03) : 1167 - 1179
  • [5] OpenSegSPIM: a user-friendly segmentation tool for SPIM data
    Gole, Laurent
    Ong, Kok Haur
    Boudier, Thomas
    Yu, Weimiao
    Ahmed, Sohail
    [J]. BIOINFORMATICS, 2016, 32 (13) : 2075 - 2077
  • [6] genomeSidekick: A user-friendly epigenomics data analysis tool
    Chen, Junjie
    Zhu, Ashley J.
    Packard, Rene R. S.
    Vondriska, Thomas M.
    Chapski, Douglas J.
    [J]. FRONTIERS IN BIOINFORMATICS, 2022, 2
  • [7] MetaConfigurator: A User-Friendly Tool for Editing Structured Data Files
    Felix Neubauer
    Paul Bredl
    Minye Xu
    Keyuriben Patel
    Jürgen Pleiss
    Benjamin Uekermann
    [J]. Datenbank-Spektrum, 2024, 24 (2) : 161 - 169
  • [8] A User-Friendly Visualization Tool for Multi-Omics Data
    Huh, Sunghyun
    Kim, Min-Sik
    [J]. PROTEOMICS, 2020, 20 (21-22)
  • [9] MASE: A user-friendly performance tool
    Tan, GY
    Hura, GS
    [J]. MICROELECTRONICS AND RELIABILITY, 1996, 36 (06): : 821 - 841
  • [10] A user-friendly tool for image analysis
    Nair H.
    [J]. Pattern Recognition and Image Analysis, 2006, 16 (2) : 234 - 238