Symmetries Shared by the Poincare Group and the Poincare Sphere

被引:6
|
作者
Kim, Young S. [1 ]
Noz, Marilyn E. [2 ]
机构
[1] Univ Maryland, Ctr Fundamental Phys, College Pk, MD 20742 USA
[2] NYU, Dept Radiol, New York, NY 10016 USA
来源
SYMMETRY-BASEL | 2013年 / 5卷 / 03期
关键词
Poincare group; Poincare sphere; Wigner's little groups; particle mass; decoherence mechanism; two-by-two representations; Lorentz group; POLARIZATION OPTICS; REPRESENTATION;
D O I
10.3390/sym5030233
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Henri Poincare formulated the mathematics of Lorentz transformations, known as the Poincare group. He also formulated the Poincare sphere for polarization optics. It is shown that these two mathematical instruments can be derived from the two-by-two representations of the Lorentz group. Wigner's little groups for internal space-time symmetries are studied in detail. While the particle mass is a Lorentz-invariant quantity, it is shown to be possible to address its variations in terms of the decoherence mechanism in polarization optics.
引用
收藏
页码:233 / 252
页数:20
相关论文
共 50 条
  • [1] Discrete symmetries as automorphisms of the proper Poincare group
    Buchbinder, IL
    Gitman, DM
    Shelepin, AL
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (04) : 753 - 790
  • [2] Poincare sphere
    [J]. Hewlett-Packard Journal, 1995, 46 (01):
  • [3] Manipulation of full Poincare beams on a hybrid Poincare sphere
    Ling, Xiaohui
    Yi, Xunong
    Dai, Zhiping
    Wang, Youwen
    Chen, Liezun
    [J]. HOLOGRAPHY, DIFFRACTIVE OPTICS, AND APPLICATIONS VII, 2017, 10022
  • [4] A Poincare Cone Condition in the Poincare Group
    Tardif, Camille
    [J]. POTENTIAL ANALYSIS, 2013, 38 (03) : 1001 - 1030
  • [5] Generalized Poincare sphere
    Ren, Zhi-Cheng
    Kong, Ling-Jun
    Li, Si-Min
    Qian, Sheng-Xia
    Li, Yongnan
    Tu, Chenghou
    Wang, Hui-Tian
    [J]. OPTICS EXPRESS, 2015, 23 (20): : 26586 - 26595
  • [6] POINCARE SPHERE REPRESENTATION
    STEPHENS, NWF
    [J]. APPLIED OPTICS, 1982, 21 (16): : 2865 - 2865
  • [7] Fuzzy worldlines with κ-Poincare symmetries
    Ballesteros, Angel
    Gubitosi, Giulia
    Gutierrez-Sagredo, Ivan
    Mercati, Flavio
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (12)
  • [8] Unitary transformation for Poincare beams on different parts of Poincare sphere
    Sun, Xibo
    Geng, Yuanchao
    Zhu, Qihua
    Huang, Wanqing
    Zhang, Ying
    Wang, Wenyi
    Liu, Lanqin
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [9] Generation of Full Poincare Beams on Arbitrary Order Poincare Sphere
    Wang, Jue
    Wang, Lin
    Xin, Yu
    [J]. CURRENT OPTICS AND PHOTONICS, 2017, 1 (06) : 631 - 636
  • [10] Characterization and manipulation of full Poincare beams on the hybrid Poincare sphere
    Ling, Xiaohui
    Yi, Xunong
    Dai, Zhiping
    Wang, Youwen
    Chen, Liezun
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (11) : 2172 - 2176