Convergence analysis of V-Cycle multigrid methods for anisotropic elliptic equations

被引:7
|
作者
Wu, Yongke [2 ]
Chen, Long [1 ]
Xie, Xiaoping [2 ]
Xu, Jinchao [3 ,4 ,5 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[3] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[4] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[5] Penn State Univ, University Pk, PA 16801 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
bilinear element; anisotropic equations; multigrid method; ITERATIVE METHODS; ALGORITHMS;
D O I
10.1093/imanum/drr043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fast multigrid solvers are considered for the linear systems arising from the bilinear finite element discretizations of second-order elliptic equations with anisotropic diffusion. Optimal convergence of Vcycle multigrid methods in the semicoarsening case and nearly optimal convergence of V-cycle multigrid method with line smoothing in the uniformly-coarsening case are established using the Xu-Zikatanov identity. Since the 'regularity assumption' is not used in the analysis, the results can be extended to general domains consisting of rectangles.
引用
收藏
页码:1329 / 1347
页数:19
相关论文
共 50 条