Non-LTE kinetics modeling of krypton ions: Calculations of radiative cooling coefficients

被引:18
|
作者
Chung, H-K [1 ]
Fournier, K. B. [1 ]
Lee, R. W. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
Collisional-radiative modeling; Non-LTE kinetics; Plasma spectroscopy; Radiative cooling rates; Radiative loss rates; Krypton; Power loss;
D O I
10.1016/j.hedp.2005.12.002
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For plasmas containing high-Z ions the energy loss due to radiative processes can be important in understanding energy distributions and spectral characteristics. Since high-Z plasmas occur over a wide range of temperature and density conditions, a general non-LTE population kinetics description is required to provide a qualitative and quantitative description for radiative energy loss. We investigate radiative properties of non-LTE krypton plasmas with a collisional-radiative (CR) model constructed from detailed atomic data. This work makes two extensions beyond previous non-LTE kinetics models. First, this model explicitly treats the dielectronic recombination (DR) channels. Second, this model allows one to investigate the higher electron density regimes found commonly in laboratory plasmas. This more comprehensive approach enables the study of population kinetics in a general manner and will provide a systematic guide for reducing a complex model to a simpler one. Specifically, we present the calculations of radiative cooling coefficients of krypton ions as a function of electron density in the optically thin limit. Total, soft X-ray (1.6 keV <= E <= 12 keV), and hard X-ray (E >= 12 keV) radiative cooling coefficients are given for the plasma conditions of 0.6 keV >= T-e <= 10 keVand 10(14) cm(-3) <= N-e <= 10(24) cm(-3). The ionic radiative cooling coefficients provided are sufficient to allow users to construct the total rate from given charge state distributions. Steady-state calculations of the average charge state at given T-e and N-e values are also presented. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 15
页数:9
相关论文
共 50 条
  • [1] Augmented Non-LTE Parameterization of NO Infrared Radiative Cooling Rates
    Eckermann, Stephen D.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2023, 128 (02)
  • [2] APPROXIMATION OF NON-LTE COEFFICIENTS
    GULYAEV, SA
    [J]. ASTRONOMICHESKII ZHURNAL, 1980, 57 (05): : 1108 - 1110
  • [3] Non-LTE calculations of radiative forces for thallium in the atmospheres of HgMn stars
    Proffitt, CR
    Brage, T
    Leckrone, DS
    [J]. M.A.S.S. - MODEL ATMOSPHERES AND SPECTRUM SYNTHESIS, 5TH VIENNA - WORKSHOP, 1996, 108 : 103 - 108
  • [4] Rotational non-LTE in HCN in the thermosphere of Titan: Implications for the radiative cooling
    Rezac, L.
    Kutepov, A. A.
    Faure, A.
    Hartogh, P.
    Feofilov, A. G.
    [J]. ASTRONOMY & ASTROPHYSICS, 2013, 555
  • [5] Non-LTE radiative transfer with Turbospectrum
    Gerber, Jeffrey M. M.
    Magg, Ekaterina
    Plez, Bertrand
    Bergemann, Maria
    Heiter, Ulrike
    Olander, Terese
    Hoppe, Richard
    [J]. ASTRONOMY & ASTROPHYSICS, 2023, 669
  • [6] COLLISIONAL-RADIATIVE SWITCHING - A POWERFUL TECHNIQUE FOR CONVERGING NON-LTE CALCULATIONS
    HUMMER, DG
    VOELS, SA
    [J]. ASTRONOMY & ASTROPHYSICS, 1988, 192 (1-2) : 279 - 280
  • [7] Large-scale kinetics modeling of non-LTE plasmas
    Fontes, CJ
    Colgan, J
    Zhang, HL
    Abdallah, J
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2006, 99 (1-3): : 175 - 185
  • [8] OPACITY CALCULATIONS FOR NON-LTE SYSTEMS
    LI, SC
    HAN, GX
    WU, ZQ
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1995, 54 (1-2): : 257 - 260
  • [9] MULTIDIMENSIONAL RADIATIVE-TRANSFER IN STRATIFIED ATMOSPHERES .4. RADIATIVE COOLING BY LTE AND NON-LTE SPECTRAL-LINES
    TRUJILLOBUENO, J
    KNEER, F
    [J]. ASTRONOMY & ASTROPHYSICS, 1987, 174 (1-2) : 183 - 186
  • [10] Non-LTE superconfiguration collisional radiative model
    Bar-Shalom, A.
    Oreg, J.
    Klapisch, M.
    [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 58 (4-6): : 427 - 439