A wavelet-based hybrid approach to estimate variance function in heteroscedastic regression models

被引:4
|
作者
Palanisamy, T. [1 ]
Ravichandran, J. [1 ]
机构
[1] Amrita Vishwa Vidyapeetham, Amrita Sch Engn, Dept Math, Coimbatore, Tamil Nadu, India
关键词
Heteroscedasticity; Wavelet thresholding; Basic pursuit; Overcomplete dictionary; NOISE;
D O I
10.1007/s00362-014-0614-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a wavelet-based hybrid approach to estimate the variance function in a nonparametric heteroscedastic fixed design regression model. A data-driven estimator is constructed by applying wavelet thresholding along with the technique of sparse representation to the difference-based initial estimates. We prove the convergence of the proposed estimator. The numerical results show that the proposed estimator performs better than the existing variance estimation procedures in the mean square sense over a range of smoothness classes.
引用
收藏
页码:911 / 932
页数:22
相关论文
共 50 条