Waiting-Time Distribution of Periodic One-Dimensional Random Walks

被引:0
|
作者
Zhang, Yunxin [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Ctr Computat Syst Biol, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
基金
上海市自然科学基金;
关键词
MOLECULAR MOTORS; KINETIC-MODELS; KINESIN; STEPS; DESCRIBES; MECHANICS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a mathematical method for recovering the waiting-time distribution of a multiple internal state process from its rate constants is presented. In this method, following the basic idea of Monte Carlo simulation, we assume that each of the internal transition processes has an exponential distribution. Since the waiting-time distribution includes more information than the transition rates, the method provided in this paper might be useful for understanding multi-state biophysical and biochemical processes.
引用
收藏
页码:598 / 606
页数:9
相关论文
共 50 条
  • [1] DIFFUSION ON A ONE-DIMENSIONAL STRUCTURE WITH HIERARCHICAL WAITING-TIME DISTRIBUTION
    GIACOMETTI, A
    MARITAN, A
    STELLA, AL
    [J]. PHYSICAL REVIEW B, 1988, 38 (04): : 2758 - 2764
  • [2] ON PERIODIC DISTRIBUTION OF WAITING-TIME PROCESS
    AFANASEVA, LG
    [J]. LECTURE NOTES IN MATHEMATICS, 1985, 1155 : 1 - 20
  • [3] Log-periodic modulation in one-dimensional random walks
    Padilla, L.
    Martin, H. O.
    Iguain, J. L.
    [J]. EPL, 2009, 85 (02)
  • [4] Localization in one-dimensional random random walks
    Compte, A
    Bouchaud, JP
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (29): : 6113 - 6121
  • [5] Loops in one-dimensional random walks
    S. Wolfling
    Y. Kantor
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 1999, 12 : 569 - 577
  • [6] Loops in one-dimensional random walks
    Wolfling, S
    Kantor, Y
    [J]. EUROPEAN PHYSICAL JOURNAL B, 1999, 12 (04): : 569 - 577
  • [7] Asymmetric one-dimensional random walks
    Antczak, Grazyna
    Ehrlich, Gert
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (12):
  • [8] Mean cover time of one-dimensional persistent random walks
    Chupeau, Marie
    Benichou, Olivier
    Voituriez, Raphael
    [J]. PHYSICAL REVIEW E, 2014, 89 (06):
  • [10] Residence time in one-dimensional random walks in presence of moving defects
    Cirillo, Emilio N. M.
    Colangeli, Matteo
    Di Francesco, Antonio
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2022, 69