Long-tail buffer-content distributions in broadband networks

被引:30
|
作者
Choudhury, GL [1 ]
Whitt, W [1 ]
机构
[1] AT&T BELL LABS, MURRAY HILL, NJ 07974 USA
关键词
asynchronous transfer mode; ATM; broadband networks; B-ISDN; buffer content; tail probabilities; stochastic fluid models; long-tail distributions; power tails; regularly variation; subexponential distributions;
D O I
10.1016/S0166-5316(96)00059-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We identify conditions under which relatively large buffers will be required in broadband communication networks. For this purpose, we analyze an infinite-capacity stochastic fluid model with a general stationary environment process (without the usual independence or Markov assumptions). With that level of generality, we are unable to establish asymptotic results, but by a very simple argument we are able to obtain a revealing lower bound on the steady-state buffer-content tail probability. The bounding argument shows that the steady-state buffer content will have a long-tail distribution when the sojourn time in a set of states with positive net input rate itself has a long tail distribution. If a set of independent sources, each with a general stationary environment process, produces a positive net flow when all are in high-activity states, and if each of these sources has a high-activity sojourn-time distribution with a long tail, then the steady-state buffer-content distribution will have a long tail, but possibly one that decays faster than the tail for any single component source. The full buffer-content distribution can be derived in the special case of a two-state fluid model with general high-and low-activity-time distributions, assuming that successive high-and low-activity times come from independent sequences of i.i.d. random variables. In that case the buffer-content distribution will have a long tail when the high-activity-time distribution has a long tail. We illustrate by giving numerical examples of the two-state model based on numerical transform inversion. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:177 / 190
页数:14
相关论文
共 50 条
  • [1] Quenched disorder and long-tail distributions
    Kleczkowski, A
    Góra, PF
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 327 (3-4) : 378 - 398
  • [2] Capturing long-tail distributions of object subcategories
    Zhu, Xiangxin
    Anguelov, Dragomir
    Ramanan, Deva
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 915 - 922
  • [3] STDP can produce long-tail weight distributions
    Gilson, Matthieu
    Fukai, Tomoki
    [J]. NEUROSCIENCE RESEARCH, 2010, 68 : E346 - E346
  • [4] Long-Tail Hashing
    Chen, Yong
    Hou, Yuqing
    Leng, Shu
    Zhang, Qing
    Lin, Zhouchen
    Zhang, Dell
    [J]. SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 1328 - 1338
  • [5] Optimal Recommendation and Long-tail Provision Strategies for Content Monetization
    Hwang, Ting-Kai
    Li, Yung-Ming
    [J]. 2014 47TH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), 2014, : 1316 - 1323
  • [6] On the reconstruction of Ito models on the basis of time series with long-tail distributions
    Rozmarynowska, Aneta
    [J]. ACTA GEOPHYSICA, 2009, 57 (02) : 311 - 329
  • [7] On the reconstruction of Ito models on the basis of time series with long-tail distributions
    Aneta Rozmarynowska
    [J]. Acta Geophysica, 2009, 57 : 311 - 329
  • [8] WAITING-TIME TAIL PROBABILITIES IN QUEUES WITH LONG-TAIL SERVICE-TIME DISTRIBUTIONS
    ABATE, J
    CHOUDHURY, GL
    WHITT, W
    [J]. QUEUEING SYSTEMS, 1994, 16 (3-4) : 311 - 338
  • [9] Boosting Long-Tail Data Classification with Sparse Prototypical Networks
    Figueroa, Alexei
    Papaioannou, Jens-Michalis
    Fallon, Conor
    Bekiaridou, Alexandra
    Bressem, Keno
    Zanos, Stavros
    Gers, Felix
    Nejdl, Wolfgang
    Loeser, Alexander
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT VII, ECML PKDD 2024, 2024, 14947 : 434 - 449
  • [10] On the Long-Tail Entities in News
    Esquivel, Jose
    Albakour, Dyaa
    Martinez, Miguel
    Corney, David
    Moussa, Samir
    [J]. ADVANCES IN INFORMATION RETRIEVAL, ECIR 2017, 2017, 10193 : 691 - 697