GALGO: an R package for multivariate variable selection using genetic algorithms

被引:126
|
作者
Trevino, V [1 ]
Falciani, F [1 ]
机构
[1] Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
关键词
D O I
10.1093/bioinformatics/btl074
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The development of statistical models linking the molecular state of a cell to its physiology is one of the most important tasks in the analysis of Functional Genomics data. Because of the large number of variables measured a comprehensive evaluation of variable subsets cannot be performed with available computational resources. It follows that an efficient variable selection strategy is required. However, although software packages for performing univariate variable selection are available, a comprehensive software environment to develop and evaluate multivariate statistical models using a multivariate variable selection strategy is still needed. In order to address this issue, we developed GALGO, an R package based on a genetic algorithm variable selection strategy, primarily designed to develop statistical models from large-scale datasets.
引用
收藏
页码:1154 / 1156
页数:3
相关论文
共 50 条
  • [1] VSURF: An R Package for Variable Selection Using Random Forests
    Genuer, Robin
    Poggi, Jean-Michel
    Tuleau-Malot, Christine
    [J]. R JOURNAL, 2015, 7 (02): : 19 - 33
  • [2] Variable selection by genetic algorithms
    Zhang, Y
    Zhu, EY
    Zhuang, ZX
    Wang, XR
    [J]. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 1999, 20 (09): : 1371 - 1375
  • [3] GA: A Package for Genetic Algorithms in R
    Scrucca, Luca
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2013, 53 (04): : 1 - 37
  • [4] ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms
    Peterman, William E.
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2018, 9 (06): : 1638 - 1647
  • [5] Variable selection in clustering for marketing segmentation using genetic algorithms
    Liu, Hsiang-Hsi
    Ong, Chorng-Shyong
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (01) : 502 - 510
  • [6] adegenet:: a R package for the multivariate analysis of genetic markers
    Jombart, Thibaut
    [J]. BIOINFORMATICS, 2008, 24 (11) : 1403 - 1405
  • [7] BayesSUR: An R Package for High-Dimensional Multivariate Bayesian Variable and Covariance Selection in Linear Regression
    Zhao, Zhi
    Banterle, Marco
    Bottolo, Leonardo
    Richardson, Sylvia
    Lewin, Alex
    Zucknick, Manuela
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2021, 100 (11): : 1 - 32
  • [8] FWDselect: An R Package for Variable Selection in Regression Models
    Sestelo, Marta
    Villanueva, Nora M.
    Meira-Machado, Luis
    Roca-Pardinas, Javier
    [J]. R JOURNAL, 2016, 8 (01): : 132 - 148
  • [9] Variable Selection in STAR Models with Neighbourhood Effects Using Genetic Algorithms
    Alberto, Isolina
    Beamonte, Asuncion
    Gargallo, Pilar
    Mateo, Pedro M.
    Salvador, Manuel
    [J]. JOURNAL OF FORECASTING, 2010, 29 (08) : 728 - 750
  • [10] Automated Input Variable Selection for Analog Methods Using Genetic Algorithms
    Horton, P.
    Martius, O.
    Grimm, S. L.
    [J]. WATER RESOURCES RESEARCH, 2024, 60 (04)