Benchmarking Classification Algorithms on High-Performance Computing Clusters

被引:1
|
作者
Bischl, Bernd [1 ]
Schiffner, Julia [1 ]
Weihs, Claus [1 ]
机构
[1] TU Dortmund, Dept Stat, Chair Computat Stat, Dortmund, Germany
关键词
D O I
10.1007/978-3-319-01595-8_3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Comparing and benchmarking classification algorithms is an important topic in applied data analysis. Extensive and thorough studies of such a kind will produce a considerable computational burden and are therefore best delegated to high-performance computing clusters. We build upon our recently developed R packages BatchJobs (Map, Reduce and Filter operations from functional programming for clusters) and BatchExperiments (Parallelization and management of statistical experiments). Using these two packages, such experiments can now effectively and reproducibly be performed with minimal effort for the researcher. We present benchmarking results for standard classification algorithms and study the influence of pre-processing steps on their performance.
引用
收藏
页码:23 / 31
页数:9
相关论文
共 50 条
  • [1] Linux clusters for high-performance computing
    Quinn, T
    [J]. GENETIC ENGINEERING NEWS, 2004, 24 (03): : 24 - 26
  • [2] GPU Clusters for High-Performance Computing
    Kindratenko, Volodymyr V.
    Enos, Jeremy J.
    Shi, Guochun
    Showerman, Michael T.
    Arnold, Galen W.
    Stone, John E.
    Phillips, James C.
    Hwu, Wen-mei
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING AND WORKSHOPS, 2009, : 638 - +
  • [3] Performance Modelling, Benchmarking and Simulation of High-Performance Computing Systems
    Jarvis, S. A.
    [J]. COMPUTER JOURNAL, 2012, 55 (02): : 136 - 137
  • [4] A continuous benchmarking infrastructure for high-performance computing applications
    Alt, Christoph
    Lanser, Martin
    Plewinski, Jonas
    Janki, Atin
    Klawonn, Axel
    Koestler, Harald
    Selzer, Michael
    Ruede, Ulrich
    [J]. INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2024, 39 (04) : 501 - 523
  • [5] Benchmarking of High Performance Computing Clusters with Heterogeneous CPU/GPU Architecture
    Sukharev, Pavel V.
    Vasilyev, Nikolay P.
    Rovnyagin, Mikhail M.
    Durnov, Maxim A.
    [J]. PROCEEDINGS OF THE 2017 IEEE RUSSIA SECTION YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING CONFERENCE (2017 ELCONRUS), 2017, : 574 - 577
  • [6] perun: Benchmarking Energy Consumption of High-Performance Computing Applications
    Muriedas, Juan Pedro Gutierrez Hermosillo
    Fluegel, Katharina
    Debus, Charlotte
    Obermaier, Holger
    Streit, Achim
    Goetz, Markus
    [J]. EURO-PAR 2023: PARALLEL PROCESSING, 2023, 14100 : 17 - 31
  • [7] llamaOS: A Solution for Virtualized High-Performance Computing Clusters
    Magato, William A.
    Wilsey, Philip A.
    [J]. PROCEEDINGS OF 2014 IEEE INTERNATIONAL PARALLEL & DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2014, : 1141 - 1150
  • [8] Data monitoring in high-performance clusters for computing applications
    Torralba, G
    González, V
    Sanchis, E
    Tao, J
    Schulz, M
    Karl, W
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2002, 49 (02) : 525 - 531
  • [9] Telegraphos: A substrate for high-performance computing on workstation clusters
    Katevenis, MGH
    Markatos, EP
    Kalokerinos, G
    Dollas, A
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1997, 43 (02) : 94 - 108
  • [10] Scaling modeling and simulation on high-performance computing clusters
    Mikailov, Mike
    Qiu, Junshan
    Luo, Fu-Jyh
    Whitney, Stephen
    Petrick, Nicholas
    [J]. SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2020, 96 (02): : 221 - 232