Real Space Renormalization of Majorana Fermions in Quantum Nano-Wire Superconductors

被引:6
|
作者
Jafari, R. [1 ,2 ,3 ,4 ,5 ]
Langari, A. [2 ,6 ,7 ]
Akbari, Alireza [1 ,8 ,9 ]
Kim, Ki-Seok [8 ,9 ]
机构
[1] APCTP, Pohang 790784, Gyeongbuk, South Korea
[2] Inst Res Fundamental Sci IPM, Sch Phys, Tehran 193955531, Iran
[3] Univ Gothenburg, Dept Phys, SE-41296 Gothenburg, Sweden
[4] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China
[5] IASBS, Dept Phys, Zanjan 4513766731, Iran
[6] Sharif Univ Technol, Dept Phys, Tehran 1458889694, Iran
[7] Sharif Univ Technol, Ctr Excellence Complex Syst & Condensed Matter, Tehran 1458889694, Iran
[8] POSTECH, Dept Phys, Pohang 790784, Gyeongbuk, South Korea
[9] POSTECH, Max Planck POSTECH Ctr Complex Phase Mat, Pohang 790784, Gyeongbuk, South Korea
关键词
HUBBARD-MODEL; PHASE-TRANSITIONS; MODIFIED SCHEME; CHAINS; STATES; COMPUTATION; FIDELITY; SYSTEMS; ANYONS;
D O I
10.7566/JPSJ.86.024008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop the real space quantum renormalization group (QRG) approach for majorana fermions. As an example we focus on the Kitaev chain to investigate the topological quantum phase transition (TQPT) in the one-dimensional spinless p-wave superconductor. Studying the behaviour of local compressibility and ground-state fidelity, show that the TQPT is signalled by the maximum of local compressibility at the quantum critical point tuned by the chemical potential. Moreover, a sudden drop of the ground-state fidelity and the divergence of fidelity susceptibility at the topological quantum critical point are used as proper indicators for the TQPT, which signals the appearance of Majorana fermions. Finally, we present the scaling analysis of ground-state fidelity near the critical point that manifests the universal information about the TQPT, which reveals two different scaling behaviors as we approach the critical point and thermodynamic limit.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] QUANTUM TRANSPORT IN POLYCRYSTALLINE SILICON SLIT NANO-WIRE
    WADA, Y
    SUGA, M
    KURE, T
    YOSHIMURA, T
    SUDO, Y
    KOBAYASHI, T
    GOTO, Y
    KONDO, S
    APPLIED PHYSICS LETTERS, 1994, 65 (05) : 624 - 626
  • [2] The effect of electrical impurity on quantum conductance in a simple cubic nano-wire
    Mardaani, Mohammad
    Mardaani, Hossein
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 33 (01): : 147 - 150
  • [3] Dimensional tuning of Majorana fermions and real space counting of the Chern number
    Mascot, Eric
    Cocklin, Sagen
    Rachel, Stephan
    Morr, Dirk K.
    PHYSICAL REVIEW B, 2019, 100 (18)
  • [4] Combating quasiparticle poisoning with multiple Majorana fermions in a periodically-driven quantum wire
    Bomantara, Raditya Weda
    Gong, Jiangbin
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (43)
  • [5] Entanglement Renormalization for Quantum Fields in Real Space
    Haegeman, Jutho
    Osborne, Tobias J.
    Verschelde, Henri
    Verstraete, Frank
    PHYSICAL REVIEW LETTERS, 2013, 110 (10)
  • [6] Real space observation of current-induced magnetic domain wall displacement in Co/Ni nano-wire by photoemission electron microscopy
    Ohshima, N.
    Koyama, T.
    Tanigawa, H.
    Kotsugi, M.
    Ohkouchi, T.
    Chiba, D.
    Kinoshita, T.
    Ono, T.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (38)
  • [7] REAL-SPACE QUANTUM RENORMALIZATION-GROUPS
    WHITE, SR
    NOACK, RM
    PHYSICAL REVIEW LETTERS, 1992, 68 (24) : 3487 - 3490
  • [8] Real space renormalization group methods and quantum groups
    MartinDelgado, MA
    Sierra, G
    PHYSICAL REVIEW LETTERS, 1996, 76 (07) : 1146 - 1149
  • [9] Quantum spins and quasiperiodicity: A real space renormalization group approach
    Jagannathan, A
    PHYSICAL REVIEW LETTERS, 2004, 92 (04) : 4
  • [10] Hydrostatic pressure and temperature effects on the electronic energy levels of a spherical quantum dot placed at the center of a nano-wire
    Safarpour, Gh.
    Moradi, M.
    Barati, M.
    SUPERLATTICES AND MICROSTRUCTURES, 2012, 52 (04) : 687 - 696