An Analysis of Land Surface Temperature Trends in the Central Himalayan Region Based on MODIS Products

被引:61
|
作者
Zhao, Wei [1 ,2 ]
He, Juelin [1 ,3 ]
Wu, Yanhong [1 ,2 ]
Xiong, Donghong [1 ,2 ]
Wen, Fengping [1 ,4 ]
Li, Ainong [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Mt Hazards & Environm, Chengdu 610041, Sichuan, Peoples R China
[2] Tribhuvan Univ, Chinese Acad Sci, Kathmandu Ctr Res & Educ, Beijing 100101, Peoples R China
[3] Chengdu Univ Technol, Coll Earth Sci, Chengdu 610059, Sichuan, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Land surface temperature; annual temperature cycle; trend analysis; Terra MODIS; climate change; KOSHI RIVER-BASIN; CLIMATE-CHANGE; SNOW COVER; SOIL-MOISTURE; NEPAL; WATER; VARIABILITY; VALIDATION; IMPACTS; LST;
D O I
10.3390/rs11080900
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The scientific community has widely reported the impacts of climate change on the Central Himalaya. To qualify and quantify these effects, long-term land surface temperature observations in both the daytime and nighttime, acquired by the Moderate Resolution Imaging Spectroradiometer from 2000 to 2017, were used in this study to investigate the spatiotemporal variations and their changing mechanism. Two periodic parameters, the mean annual surface temperature (MAST) and the annual maximum temperature (MAXT), were derived based on an annual temperature cycle model to reduce the influences from the cloud cover and were used to analyze their trend during the period. The general thermal environment represented by the average MAST indicated a significant spatial distribution pattern along with the elevation gradient. Behind the clear differences in the daytime and nighttime temperatures at different physiographical regions, the trend test conducted with the Mann-Kendall (MK) method showed that most of the areas with significant changes showed an increasing trend, and the nighttime temperatures exhibited a more significant increasing trend than the daytime temperatures, for both the MAST and MAXT, according to the changing areas. The nighttime changing areas were more widely distributed (more than 28%) than the daytime changing areas (around 10%). The average change rates of the MAST and MAXT in the daytime are 0.102 degrees C/yr and 0.190 degrees C/yr, and they are generally faster than those in the nighttime (0.048 degrees C/yr and 0.091 degrees C/yr, respectively). The driving force analysis suggested that urban expansion, shifts in the courses of lowland rivers, and the retreat of both the snow and glacier cover presented strong effects on the local thermal environment, in addition to the climatic warming effect. Moreover, the strong topographic gradient greatly influenced the change rate and evidenced a significant elevation-dependent warming effect, especially for the nighttime LST. Generally, this study suggested that the nighttime temperature was more sensitive to climate change than the daytime temperature, and this general warming trend clearly observed in the central Himalayan region could have important influences on local geophysical, hydrological, and ecological processes.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Trend Analysis of MODIS Land Surface Temperature and Land Cover in Central Italy
    Ghaderpour, Ebrahim
    Mazzanti, Paolo
    Bozzano, Francesca
    Mugnozza, Gabriele Scarascia
    LAND, 2024, 13 (06)
  • [2] Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region
    Ullah, Siddique
    Ahmad, Khalid
    Sajjad, Raja Umer
    Abbasi, Arshad Mehmood
    Nazeer, Abdul
    Tahir, Adnan Ahmad
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2019, 245 : 348 - 357
  • [3] THE RECONSTRUCTION OF MODIS LAND SURFACE TEMPERATURE PRODUCTS USING NSSR
    Yu, Wenping
    Ma, Mingguo
    Wang, Xufeng
    Tan, Junlei
    Geng, Liying
    Jia, Shuzhen
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3766 - 3769
  • [4] Reconstruction of MODIS Land Surface Temperature Products Based on Multi-Temporal Information
    Kang, Jian
    Tan, Junlei
    Jin, Rui
    Li, Xin
    Zhang, Yang
    REMOTE SENSING, 2018, 10 (07)
  • [5] An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data
    Maskey, Shreedhar
    Uhlenbrook, Stefan
    Ojha, Sunal
    CLIMATIC CHANGE, 2011, 108 (1-2) : 391 - 400
  • [6] An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data
    Shreedhar Maskey
    Stefan Uhlenbrook
    Sunal Ojha
    Climatic Change, 2011, 108 : 391 - 400
  • [7] An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data
    UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, Netherlands
    不详
    不详
    Clim. Change, 1600, 1 (391-400):
  • [8] Reducing the discrepancy between ASTER and MODIS land surface temperature products
    Liu, Yuanbo
    Yamaguchi, Yasushi
    Ke, Changqing
    SENSORS, 2007, 7 (12): : 3043 - 3057
  • [9] Analyzing Changes in Frozen Soil in the Source Region of the Yellow River Using the MODIS Land Surface Temperature Products
    Cao, Huiyu
    Gao, Bing
    Gong, Tingting
    Wang, Bo
    REMOTE SENSING, 2021, 13 (02) : 1 - 18
  • [10] Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US
    Zeng, Linglin
    Wardlow, Brian D.
    Tadesse, Tsegaye
    Shan, Jie
    Hayes, Michael J.
    Li, Deren
    Xiang, Daxiang
    REMOTE SENSING, 2015, 7 (01) : 951 - 970