AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle

被引:76
|
作者
Brandauer, Josef [1 ,2 ,3 ]
Vienberg, Sara G. [1 ]
Andersen, Marianne A. [1 ]
Ringholm, Stine [4 ]
Risis, Steve [1 ]
Larsen, Per S. [1 ]
Kristensen, Jonas M. [5 ]
Frosig, Christian [5 ]
Leick, Lotte [4 ]
Fentz, Joachim [5 ]
Jorgensen, Sebastian [5 ]
Kiens, Bente [5 ]
Wojtaszewski, Jorgen F. P. [5 ]
Richter, Erik A. [5 ]
Zierath, Juleen R. [1 ,6 ,7 ]
Goodyear, Laurie J. [3 ]
Pilegaard, Henriette [4 ]
Treebak, Jonas T. [1 ]
机构
[1] Univ Copenhagen, Novo Nordisk Fdn, Ctr Basic Metab Res, Sect Integrat Physiol, DK-2200 Copenhagen, Denmark
[2] Gettysburg Coll, Dept Hlth Sci, Gettysburg, PA 17325 USA
[3] Harvard Univ, Sch Med, Joslin Diabet Ctr, Metab Sect, Boston, MA 02115 USA
[4] Univ Copenhagen, August Krogh Ctr, Dept Biol, DK-2200 Copenhagen, Denmark
[5] Univ Copenhagen, August Krogh Ctr, Dept Nutr Exercise & Sports, Sect Mol Physiol, DK-2200 Copenhagen, Denmark
[6] Karolinska Inst, Dept Mol Med, Sect Integrat Physiol, Stockholm, Sweden
[7] Karolinska Inst, Dept Physiol & Pharmacol, Stockholm, Sweden
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2013年 / 591卷 / 20期
基金
新加坡国家研究基金会; 英国医学研究理事会;
关键词
CALORIE RESTRICTION; GLUCOSE-HOMEOSTASIS; LIFE-SPAN; METABOLISM; SIRT1; METFORMIN; EXERCISE; PGC-1-ALPHA; GLYCOGEN; NAD;
D O I
10.1113/jphysiol.2013.259515
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Deacetylases such as sirtuins (SIRTs) convert NAD to nicotinamide (NAM). Nicotinamide phosphoribosyl transferase (Nampt) is the rate-limiting enzyme in the NAD salvage pathway responsible for converting NAM to NAD to maintain cellular redox state. Activation of AMP-activated protein kinase (AMPK) increases SIRT activity by elevating NAD levels. As NAM directly inhibits SIRTs, increased Nampt activation or expression could be a metabolic stress response. Evidence suggests that AMPK regulates Nampt mRNA content, but whether repeated AMPK activation is necessary for increasing Nampt protein levels is unknown. To this end, we assessed whether exercise training- or 5-amino-1--d-ribofuranosyl-imidazole-4-carboxamide (AICAR)-mediated increases in skeletal muscle Nampt abundance are AMPK dependent. One-legged knee-extensor exercise training in humans increased Nampt protein by 16% (P < 0.05) in the trained, but not the untrained leg. Moreover, increases in Nampt mRNA following acute exercise or AICAR treatment (P < 0.05 for both) were maintained in mouse skeletal muscle lacking a functional AMPK 2 subunit. Nampt protein was reduced in skeletal muscle of sedentary AMPK 2 kinase dead (KD), but 6.5 weeks of endurance exercise training increased skeletal muscle Nampt protein to a similar extent in both wild-type (WT) (24%) and AMPK 2 KD (18%) mice. In contrast, 4 weeks of daily AICAR treatment increased Nampt protein in skeletal muscle in WT mice (27%), but this effect did not occur in AMPK 2 KD mice. In conclusion, functional 2-containing AMPK heterotrimers are required for elevation of skeletal muscle Nampt protein, but not mRNA induction. These findings suggest AMPK plays a post-translational role in the regulation of skeletal muscle Nampt protein abundance, and further indicate that the regulation of cellular energy charge and nutrient sensing is mechanistically related.
引用
收藏
页码:5207 / 5220
页数:14
相关论文
共 50 条
  • [1] AMP-activated protein kinase regulates the expression of monocarboxylate transporter 4 in skeletal muscle
    Furugen, Ayako
    Kobayashi, Masaki
    Narumi, Katsuya
    Watanabe, Meguho
    Otake, Sho
    Itagaki, Shirou
    Iseki, Ken
    [J]. LIFE SCIENCES, 2011, 88 (3-4) : 163 - 168
  • [2] 5′-AMP-activated protein kinase regulates skeletal muscle glycogen content and ergogenics
    Barnes, BR
    Glnnd, S
    Long, YC
    Hjälm, G
    Andersson, L
    Zierath, JR
    [J]. FASEB JOURNAL, 2005, 19 (07): : 773 - 779
  • [3] Expression of the AMP-activated protein kinase β1 and β2 subunits in skeletal muscle
    Chen, ZP
    Heierhorst, J
    Mann, RJ
    Mitchelhill, KI
    Michell, BJ
    Witters, LA
    Lynch, GS
    Kemp, BE
    Stapleton, D
    [J]. FEBS LETTERS, 1999, 460 (02) : 343 - 348
  • [4] Role of 5′AMP-activated protein kinase in skeletal muscle
    Treebak, J. T.
    Wojtaszewski, J. F. P.
    [J]. INTERNATIONAL JOURNAL OF OBESITY, 2008, 32 (Suppl 4) : S13 - S17
  • [5] Role of 5′AMP-activated protein kinase in skeletal muscle
    J T Treebak
    J F P Wojtaszewski
    [J]. International Journal of Obesity, 2008, 32 : S13 - S17
  • [6] AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle
    Ouchi, N
    Shibata, R
    Walsh, K
    [J]. CIRCULATION RESEARCH, 2005, 96 (08) : 838 - 846
  • [7] Skeletal muscle PI3K p110β regulates expression of AMP-activated protein kinase
    Matheny, Ronald W., Jr.
    Abdalla, Mary N.
    Geddis, Alyssa V.
    Leandry, Luis A.
    Lynch, Christine M.
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 482 (04) : 1420 - 1426
  • [8] The role of AMP-activated protein kinase in regulation of skeletal muscle metabolism
    Dziewulska, Anna
    Dobrzyn, Pawel
    Dobrzyn, Agnieszka
    [J]. POSTEPY HIGIENY I MEDYCYNY DOSWIADCZALNEJ, 2010, 64 : 513 - 521
  • [9] AMP-activated protein kinase control of fat metabolism in skeletal muscle
    Thomson, D. M.
    Winder, W. W.
    [J]. ACTA PHYSIOLOGICA, 2009, 196 (01) : 147 - 154
  • [10] The role of AMP-activated protein kinase in the expression of the dystrophin-associated protein complex in skeletal muscle
    Dial, Athan G.
    Rooprai, Paul
    Lally, James S.
    Bujak, Adam L.
    Steinberg, Gregory R.
    Ljubicic, Vladimir
    [J]. FASEB JOURNAL, 2018, 32 (06): : 2950 - 2965