Impact of sward properties on the predictability of forage quality and yield in grassland using remote sensing

被引:0
|
作者
Breitsameter, L. [1 ]
Duecker, R. [1 ]
Jasper, J. [2 ]
Isselstein, J. [1 ]
机构
[1] Univ Gottingen, Dept Crop Sci Grassl & Sci, D-37075 Gottingen, Germany
[2] Yara, D-48249 Dulmen, Germany
来源
关键词
spectrometry; crude protein; fibre content; sward structure; biomass distribution;
D O I
暂无
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Remote sensing techniques have been gaining interest due to their potential for providing fast and non-destructive measurements of crop stands. We present the results of a field experiment aimed at determining the impact of sward structural parameters on the estimation of dry biomass yield and forage quality in grasslands based on spectrometric data. Using a portable spectrometer, we measured the red edge inflection point (REIP) of swards of different species composition at three dates following fertilizer application. We analysed the explanatory power of REIP, plant species, sward height and percent ground cover of green foliage for forage quality parameters and yield. We additionally analysed the effect of sward canopy structure on the predictability of yield for individual species. Our results indicate plant species to be an important factor for the prediction of both yield and forage quality. We also found evidence that biomass distribution across sward-height layers and percent ground cover of green foliage are further factors to be considered for the estimation of grassland yield based on spectrometric measurement.
引用
收藏
页码:346 / 348
页数:3
相关论文
共 50 条
  • [1] Remote sensing for grassland and forage management
    Nicolas, H.
    [J]. FOURRAGES, 2021, (247): : 11 - 18
  • [2] Field remote sensing and its relationship to forage and crop yield and quality
    Ward, J. K.
    [J]. JOURNAL OF DAIRY SCIENCE, 2019, 102 : 412 - 412
  • [3] Grassland Yield Estimation Using Transfer Learning from Remote Sensing Data
    Eder, Elias
    Riegler-Nurscher, Peter
    Prankl, Johann
    Prankl, Heinrich
    [J]. KUNSTLICHE INTELLIGENZ, 2023, 37 (2-4): : 187 - 194
  • [4] Using Remote Sensing to Evaluate the Influence of Grassland Restoration Activities on Ecosystem Forage Provisioning Services
    Malmstrom, Carolyn M.
    Butterfield, H. Scott
    Barber, Christopher
    Dieter, Barbara
    Harrison, Richard
    Qi, Jiaquo
    Riano, David
    Schrotenboer, Abbie
    Stone, Scott
    Stoner, Chantal J.
    Wirka, Jeanne
    [J]. RESTORATION ECOLOGY, 2009, 17 (04) : 526 - 538
  • [5] IMPACT OF SLURRY APPLICATION METHOD ON SWARD YIELD AND N AND K LEACHING FROM GRASSLAND
    Mailiis, Tampere
    [J]. RESEARCH FOR RURAL DEVELOPMENT 2012, VOL 1, 2012, : 38 - 43
  • [6] Estimating Grass Sward Quality and Quantity Parameters Using Drone Remote Sensing with Deep Neural Networks
    Karila, Kirsi
    Oliveira, Raquel Alves
    Ek, Johannes
    Kaivosoja, Jere
    Koivumaki, Niko
    Korhonen, Panu
    Niemelainen, Oiva
    Nyholm, Laura
    Nasi, Roope
    Polonen, Ilkka
    Honkavaara, Eija
    [J]. REMOTE SENSING, 2022, 14 (11)
  • [7] Using remote sensing to forecast forage quality for cattle in the dry savannas of northeast Australia
    Pringle, M. J.
    O'Reagain, P. J.
    Stone, G. S.
    Carter, J. O.
    Orton, T. G.
    Bushell, J. J.
    [J]. ECOLOGICAL INDICATORS, 2021, 133
  • [8] Forage yield and quality on soil subjected to phosphorus rates in subtropical grassland of Brazil
    Mazza, Lorena de Miranda
    Vargas Motta, Antonio Carlos
    de Moraes, Anibal
    Vezzani, Fabiane Machado
    Adami, Paulo Fernando
    Rabel, Diego de Oliveira
    [J]. REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2012, 41 (05): : 1100 - 1109
  • [9] Determination of forage chemical composition using remote sensing
    Starks, PJ
    Coleman, SW
    Phillips, WA
    [J]. JOURNAL OF RANGE MANAGEMENT, 2004, 57 (06): : 635 - 640
  • [10] Grassland afforestation impact on primary productivity: a remote sensing approach
    Mercedes Vassallo, M.
    Dieguez, Hernan D.
    Garbulsky, Martin F.
    Jobbagy, Esteban G.
    Paruelo, Jose M.
    [J]. APPLIED VEGETATION SCIENCE, 2013, 16 (03) : 390 - 403