Patient-Specific Characterization of Breast Cancer Hemodynamics Using Image-Guided Computational Fluid Dynamics

被引:21
|
作者
Wu, Chengyue [1 ]
Hormuth, David A. [2 ,3 ]
Oliver, Todd A. [2 ]
Pineda, Federico [4 ]
Lorenzo, Guillermo [2 ]
Karczmar, Gregory S. [4 ]
Moser, Robert D. [2 ,5 ]
Yankeelov, Thomas E. [1 ,2 ,3 ,6 ,7 ]
机构
[1] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX 78712 USA
[3] Univ Texas Austin, Livestrong Canc Inst, Austin, TX 78712 USA
[4] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
[5] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[6] Univ Texas Austin, Dept Diagnost Med, Austin, TX 78712 USA
[7] Univ Texas Austin, Dept Oncol, Austin, TX 78712 USA
关键词
Magnetic resonance imaging; Tumors; Computational fluid dynamics; Computational modeling; Cancer; Hemodynamics; Tumor; 1D-3D coupled; blood flow; interstitial fluid pressure; DCE-MRI; diffusion MRI; POSITRON-EMISSION-TOMOGRAPHY; BLOOD-FLOW; INTERSTITIAL FLOW; PRESSURE; DIFFUSION; TUMORS; REPRODUCIBILITY; QUANTIFICATION; ACCURACY; OXYGEN;
D O I
10.1109/TMI.2020.2975375
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The overall goal of this study is to employ quantitative magnetic resonance imaging (MRI) data to constrain a patient-specific, computational fluid dynamics (CFD) model of blood flow and interstitial transport in breast cancer. We develop image processing methodologies to generate tumor-related vasculature-interstitium geometry and realistic material properties, using dynamic contrast enhanced MRI (DCE-MRI) and diffusion weighted MRI (DW-MRI) data. These data are used to constrain CFD simulations for determining the tumor-associated blood supply and interstitial transport characteristics unique to each patient. We then perform a proof-of-principle statistical comparison between these hemodynamic characteristics in 11 malignant and 5 benign lesions from 12 patients. Significant differences between groups (i.e., malignant versus benign) were observed for the median of tumor-associated interstitial flow velocity (P = 0.028), and the ranges of tumor-associated blood pressure (P = 0.016) and vascular extraction rate (P = 0.040). The implication is that malignant lesions tend to have larger magnitude of interstitial flow velocity, and higher heterogeneity in blood pressure and vascular extraction rate. Multivariable logistic models based on combinations of these hemodynamic data achieved excellent differentiation between malignant and benign lesions with an area under the receiver operator characteristic curve of 1.0, sensitivity of 1.0, and specificity of 1.0. This image-based model system is a fundamentally new way to map flow and pressure fields related to breast tumors using only non-invasive, clinically available imaging data and established laws of fluid mechanics. Furthermore, the results provide preliminary evidence for this methodology's utility for the quantitative characterization of breast cancer.
引用
收藏
页码:2760 / 2771
页数:12
相关论文
共 50 条
  • [1] Characterization of patient-specific drug delivery for breast cancer using image-guided computational fluid dynamics
    Wu, Chengyue
    Hormuth, David A.
    Pineda, Federico
    Karczmar, Gregory S.
    Moser, Robert D.
    Yankeelov, Thomas E.
    [J]. CANCER RESEARCH, 2020, 80 (16)
  • [2] Towards Patient-Specific Optimization of Neoadjuvant Treatment Protocols for Breast Cancer Based on Image-Guided Fluid Dynamics
    Wu, Chengyue
    Hormuth, David A.
    Lorenzo, Guillermo
    Jarrett, Angela M.
    Pineda, Federico
    Howard, Frederick M.
    Karczmar, Gregory S.
    Yankeelov, Thomas E.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (11) : 3334 - 3344
  • [3] Patient-specific assessment of hemodynamics by computational fluid dynamics in patients with bicuspid aortopathy
    Kimura, Naoyuki
    Nakamura, Masanori
    Komiya, Kenji
    Nishi, Satoshi
    Yamaguchi, Atsushi
    Tanaka, Osamu
    Misawa, Yoshio
    Adachi, Hideo
    Kawahito, Koji
    [J]. JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2017, 153 (04): : S52 - +
  • [4] Leveraging Patient-Specific Simulated Angiograms to Characterize Cerebral Aneurysm Hemodynamics using Computational Fluid Dynamics
    Chivukula, V
    White, R.
    Shields, A.
    Davies, J.
    Mokin, M.
    Bednarek, D. R.
    Rudin, S.
    Ionita, C.
    [J]. MEDICAL IMAGING 2022: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2022, 12036
  • [5] Image-Guided Distal Radius Osteotomy Using Patient-Specific Instrument Guides
    Kunz, Manuela
    Ma, Burton
    Rudan, John F.
    Ellis, Randy E.
    Pichora, David R.
    [J]. JOURNAL OF HAND SURGERY-AMERICAN VOLUME, 2013, 38A (08): : 1618 - 1624
  • [6] Image-guided patient-specific prediction of interstitial fluid flow and drug transport in solid tumors
    Salavati, Hooman
    Pullens, Pim
    Debbaut, Charlotte
    Ceelen, Wim
    [J]. Journal of Controlled Release, 2025, 378 : 899 - 911
  • [7] An image-based modeling framework for patient-specific computational hemodynamics
    Antiga, Luca
    Piccinelli, Marina
    Botti, Lorenzo
    Ene-Iordache, Bogdan
    Remuzzi, Andrea
    Steinman, David A.
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2008, 46 (11) : 1097 - 1112
  • [8] An image-based modeling framework for patient-specific computational hemodynamics
    Luca Antiga
    Marina Piccinelli
    Lorenzo Botti
    Bogdan Ene-Iordache
    Andrea Remuzzi
    David A. Steinman
    [J]. Medical & Biological Engineering & Computing, 2008, 46
  • [9] Response to "Image-Guided Distal Radius Osteotomy Using Patient-Specific Instrument Guides"
    Fuller, Sam M.
    Bindra, Randy
    [J]. JOURNAL OF HAND SURGERY-AMERICAN VOLUME, 2014, 39 (01): : 174 - 174
  • [10] Characterization of Cerebral Hemodynamics in Patients With Carotid Stenosis Using Patient-Specific Computational Modeling
    Schollenberger, Jonas
    Osborne, Nicholas
    Hernandez-Garcia, Luis
    Figueroa, C. Alberto
    [J]. JOURNAL OF VASCULAR SURGERY, 2021, 74 (03) : E146 - E146