Deep learning based approach on interferometric plasmonic microscopy images for efficient detection of nanoparticle

被引:0
|
作者
Moon, Gwiyeong [1 ]
Son, Taehwang [1 ]
Lee, Hongki [1 ,2 ]
Kim, Donghyun [1 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
基金
新加坡国家研究基金会;
关键词
surface plasmon scattering; surface plasmon resonance; deep learning; CLASSIFICATION; TRANSMISSION; MOBILE;
D O I
10.1117/12.2632959
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate the method to analyze interferometric plasmonic microscopy (IPM) images using a deep learning approach. An IPM image was generated by employing an optical model: the image intensity was formed by reflected and scattered fields. Convolutional neural network was utilized for the classification of IPM images. Conventional detection method based on fourier filtering was taken for comparison with the proposed method. It was confirmed that deep learning improves the performance significantly, in particular, robustness to noise. These results suggested applicability of deep learning beyond IPM images with higher efficiency.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] An Efficient Deep Learning Approach for Malaria Parasite Detection in Microscopic Images
    Boit, Sorio
    Patil, Rajvardhan
    DIAGNOSTICS, 2024, 14 (23)
  • [2] Nanoparticle Detection from TEM Images with Deep Learning
    Guven, Gokhan
    Oktay, Ayse Betul
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [3] Asbestos Detection with Fluorescence Microscopy Images and Deep Learning
    Cai, Changjie
    Nishimura, Tomoki
    Hwang, Jooyeon
    Hu, Xiao-Ming
    Kuroda, Akio
    SENSORS, 2021, 21 (13)
  • [4] An efficient network intrusion detection approach based on deep learning
    Wang, Zhihao
    Jiang, Dingde
    Huo, Liuwei
    Yang, Wei
    WIRELESS NETWORKS, 2021,
  • [5] Circle detection in images: A deep learning approach
    Ercan, M. Fikret
    Qiankun, Allen Liu
    Sakai, Simon Seiya
    Miyazaki, Takashi
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [6] DEEP LEARNING FOR PARTICLE DETECTION AND TRACKING IN FLUORESCENCE MICROSCOPY IMAGES
    Ritter, C.
    Spilger, R.
    Lee, J-Y
    Bartenschlager, R.
    Rohr, K.
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 873 - 876
  • [7] A Highly Efficient Vehicle Taillight Detection Approach Based on Deep Learning
    Li, Qiaohong
    Garg, Sahil
    Nie, Jiangtian
    Li, Xiang
    Liu, Ryan Wen
    Cao, Zhiguang
    Hossain, M. Shamim
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4716 - 4726
  • [8] A Detection Approach for Floating Debris Using Ground Images Based on Deep Learning
    Qiao, Guangchao
    Yang, Mingxiang
    Wang, Hao
    REMOTE SENSING, 2022, 14 (17)
  • [9] A Fully Automatic based Deep Learning Approach for Aneurysm Detection in DSA Images
    Rahmany, Ines
    Guetari, Ramzi
    Khlifa, Nawres
    2018 IEEE THIRD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, APPLICATIONS AND SYSTEMS (IPAS), 2018, : 303 - 307
  • [10] An ensemble deep learning based approach for red lesion detection in fundus images
    Orlando, Jose Ignacio
    Prokofyeva, Elena
    del Fresno, Mariana
    Blaschko, Matthew B.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 153 : 115 - 127