The multiplicative inverse eigenvalue problem over an algebraically closed field

被引:1
|
作者
Rosenthal, J [1 ]
Wang, XC
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
关键词
eigenvalue completion; inverse eigenvalue problems; dominant morphism theorem;
D O I
10.1137/S0895479800378192
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be an n x n square matrix and let p(lambda) be a monic polynomial of degree n. Let Z be a set of n x n matrices. The multiplicative inverse eigenvalue problem asks for the construction of a matrix Z is an element of Z such that the product matrix M Z has characteristic polynomial p(lambda). In this paper we provide new necessary and sufficient conditions when Z is an a ne variety over an algebraically closed field.
引用
收藏
页码:517 / 523
页数:7
相关论文
共 50 条