Diffeomorphism invariance and local Lorentz invariance

被引:3
|
作者
da Rocha, Roldao [1 ]
Rodrigues, Waldyr A., Jr. [2 ]
机构
[1] Univ Fed ABC, Ctr Matemat Comp & Cognicao, BR-09210170 Santo Andre, SP, Brazil
[2] Univ Estadual Campinas, Inst Matemat Estatist & Comp Cient, Dept Matemat Aplicada, BR-13083859 Cidade Univ Zeferino Vaz, Brazil
关键词
Lorentz invariance; Clifford bundles; Dirac-Hestenes equations; Riemann-Cartan spacetimes;
D O I
10.1007/s00006-008-0109-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that diffeomorphism invariance of the Maxwell and the Dirac-Hestenes equations implies the equivalence among different universe models such that if one has a linear connection with non-mill torsion and/or curvature the others have also. On the other hand local Lorentz invariance implies the surprising equivalence among different universe models that have in general different G-connections with different curvature and torsion tensors.
引用
收藏
页码:945 / 961
页数:17
相关论文
共 50 条
  • [1] Diffeomorphism Invariance and Local Lorentz Invariance
    Roldão da Rocha
    Waldyr A. Rodrigues
    [J]. Advances in Applied Clifford Algebras, 2008, 18 : 945 - 961
  • [2] Discrete gravity with local Lorentz invariance
    Kur, Eugene
    Glasser, Alexander S.
    [J]. PHYSICAL REVIEW D, 2022, 106 (06)
  • [3] Neutrino velocity and local Lorentz invariance
    Cardone, Fabio
    Mignani, Roberto
    Petrucci, Andrea
    [J]. MODERN PHYSICS LETTERS B, 2015, 29 (28):
  • [4] On nonrelativistic diffeomorphism invariance
    Andreev, Oleg
    Haack, Michael
    Hofmann, Stefan
    [J]. PHYSICAL REVIEW D, 2014, 89 (06):
  • [5] Lattice diffeomorphism invariance
    Wetterich, C.
    [J]. PHYSICAL REVIEW D, 2012, 85 (10):
  • [6] f(T) gravity and local Lorentz invariance
    Li, Baojiu
    Sotiriou, Thomas P.
    Barrow, John D.
    [J]. PHYSICAL REVIEW D, 2011, 83 (06):
  • [7] PROBLEM OF LORENTZ INVARIANCE IN LOCAL FIELD THEORY
    TAGUCHI, Y
    YAMAMOTO, K
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1971, 46 (03): : 1000 - &
  • [8] Equivalence Principle and the Principle of Local Lorentz Invariance
    W. A. Rodrigues
    M. Sharif
    [J]. Foundations of Physics, 2001, 31 : 1785 - 1806
  • [9] Limits on local Lorentz invariance in mercury and cesium
    Peck, S. K.
    Kim, D. K.
    Stein, D.
    Orbaker, D.
    Foss, A.
    Hummon, M. T.
    Hunter, L. R.
    [J]. PHYSICAL REVIEW A, 2012, 86 (01):
  • [10] Hidden consequence of active local Lorentz invariance
    Rodrigues, WA
    Da Rocha, R
    Vaz, J
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2005, 2 (02) : 305 - 357