Kinetic theory of quasi-stationary collisionless axisymmetric plasmas in the presence of strong rotation phenomena

被引:17
|
作者
Cremaschini, Claudio [1 ]
Stuchlik, Zdenek [1 ]
Tessarotto, Massimo [2 ]
机构
[1] Silesian Univ Opava, Fac Philosophy & Sci, Inst Phys, CZ-74601 Opava, Czech Republic
[2] Univ Trieste, Dept Math & Geosci, I-34127 Trieste, Italy
关键词
LABORATORY EXPERIMENTS; SOLAR-WIND; TRANSPORT; FLOWS; SIMULATIONS; INSTABILITY; EQUILIBRIA; PARTICLES; MOTION; DISKS;
D O I
10.1063/1.4807037
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The problem of formulating a kinetic treatment for quasi-stationary collisionless plasmas in axisymmetric systems subject to the possibly independent presence of local strong velocity-shear and supersonic rotation velocities is posed. The theory is developed in the framework of the Vlasov-Maxwell description for multi-species non-relativistic plasmas. Applications to astrophysical accretion discs arising around compact objects and to plasmas in laboratory devices are considered. Explicit solutions for the equilibrium kinetic distribution function (KDF) are constructed based on the identification of the relevant particle adiabatic invariants. These are shown to be expressed in terms of generalized non-isotropic Gaussian distributions. A suitable perturbative theory is then developed which allows for the treatment of non-uniform strong velocity-shear/supersonic plasmas. This yields a series representation for the equilibrium KDF in which the leading-order term depends on both a finite set of fluid fields as well as on the gradients of an appropriate rotational frequency. Constitutive equations for the fluid number density, flow velocity, and pressure tensor are explicitly calculated. As a notable outcome, the discovery of a new mechanism for generating temperature and pressure anisotropies is pointed out, which represents a characteristic feature of plasmas considered here. This is shown to arise as a consequence of the canonical momentum conservation and to contribute to the occurrence of temperature anisotropy in combination with the adiabatic conservation of the particle magnetic moment. The physical relevance of the result and the implications of the kinetic solution for the self-generation of quasi-stationary electrostatic and magnetic fields through a kinetic dynamo are discussed. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Collisionless kinetic regimes for quasi-stationary axisymmetric accretion disc plasmas
    Cremaschini, C.
    Tessarotto, M.
    [J]. PHYSICS OF PLASMAS, 2012, 19 (08)
  • [2] Kinetic closure conditions for quasi-stationary collisionless axisymmetric magnetoplasmas
    Cremaschini, Claudio
    Miller, John C.
    Tessarotto, Massimo
    [J]. ADVANCES IN PLASMA ASTROPHYSICS, 2011, (274): : 236 - 238
  • [3] Kinetic description of quasi-stationary axisymmetric collisionless accretion disk plasmas with arbitrary magnetic field configurations
    Cremaschini, Claudio
    Miller, John C.
    Tessarotto, Massimo
    [J]. PHYSICS OF PLASMAS, 2011, 18 (06)
  • [4] Strong self-focusing in quasi-stationary laser plasmas
    Malka, V
    Renard-Le Galloudec, N
    Hüller, S
    Pesme, D
    Amiranoff, F
    Baton, SD
    Modena, A
    Mounaix, P
    Rousseaux, C
    Salvati, M
    [J]. PHYSICS OF PLASMAS, 2000, 7 (10) : 4259 - 4265
  • [5] Theory of quasi-stationary kinetic dynamos in magnetized accretion discs
    Cremaschini, Claudio
    Miller, John C.
    Tessarotto, Massimo
    [J]. ADVANCES IN PLASMA ASTROPHYSICS, 2011, (274): : 228 - 231
  • [6] Quasi-stationary solitons for Langmuir waves in plasmas
    Biswas, Anjan
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (01) : 69 - 76
  • [7] Kinetic equilibria of relativistic collisionless plasmas in the presence of non-stationary electromagnetic fields
    Cremaschini, Claudio
    Tessarotto, Massimo
    Stuchlik, Zdenek
    [J]. PHYSICS OF PLASMAS, 2014, 21 (03)
  • [8] QUASI-STATIONARY SPIRAL BURNING THEORY
    NOVOZHILOV, BV
    [J]. DOKLADY AKADEMII NAUK, 1993, 330 (02) : 217 - 219
  • [9] QUASI-STATIONARY THEORY OF NONSTATIONARY PROCESSES
    ULYANOV, KN
    [J]. HIGH TEMPERATURE, 1966, 4 (05) : 567 - &
  • [10] Quasi-stationary model for the micromagnetism theory
    Carbou, G
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (08): : 847 - 850