Regularizing Binding Energy Distributions and the Hydration Free Energy of Protein Cytochrome C from All-Atom Simulations

被引:30
|
作者
Weber, Valery [2 ]
Asthagiri, D. [1 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[2] IBM Res, Zurich, Switzerland
关键词
QUASI-CHEMICAL THEORY; MOLECULAR-DYNAMICS; SOLVATION; ELECTROSTATICS; SURFACE; ENERGETICS; MECHANICS; PDB2PQR; NUMBER; WATER;
D O I
10.1021/ct300505b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By introducing an external field to temper short-range protein water interactions, we regularize the statistical problem of calculating the hydration free energy, mu(ex), of the protein cytochrome C using the potential distribution theorem. Using this approach, we calculate the nonelectrostatic (dispersion) and electrostatic contributions to mu(ex). The nonelectrostatic contribution interpreted within an accessible surface area approach leads to a surface energy parameter that is about twice the value based on the hydration of small alkanes: at the size scale of the protein, hydrophobic hydration is more stronger relative to small alkanes. The electrostatic contribution does not obey linear response behavior. Further, depending on the choice of the protein dielectric constant, continuum dielectric calculations of the electrostatic contribution differ from the all-atom result by between 6%-12% (in a net value of about -2000 kcal/mol). We conclude by indicating potential applications of the present physically transparent approach toward illuminating the role of water, ions, and osmolytes in protein solution thermodynamics, including in protein folding and aggregation.
引用
收藏
页码:3409 / 3415
页数:7
相关论文
共 50 条
  • [1] Predictions of Hydration Free Energies from All-Atom Molecular Dynamics Simulations
    Mobley, David L.
    Bayly, Christopher I.
    Cooper, Matthew D.
    Dill, Ken A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (14): : 4533 - 4537
  • [2] All-Atom Protein Folding with Free-Energy Forcefields
    Verma, A.
    Gopal, S. M.
    Schug, A.
    Herges, T.
    Klenin, K.
    Wenzel, W.
    [J]. MOLECULAR BIOLOGY OF PROTEIN FOLDING, PT A, 2008, 83 : 181 - +
  • [3] All-atom calculation of protein free-energy profiles
    Orioli, S.
    Ianeselli, A.
    Spagnolli, G.
    Faccioli, P.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (15):
  • [4] A Free-Energy Approach for All-Atom Protein Simulation
    Verma, Abhinav
    Wenzel, Wolfgang
    [J]. BIOPHYSICAL JOURNAL, 2009, 96 (09) : 3483 - 3494
  • [5] All-atom folding studies of a DNA binding protein in a free-energy force field
    Gopal, Srinivasa M.
    Wenzel, Wolfgang
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (28)
  • [6] Protein structure prediction by all-atom free-energy refinement
    Verma, Abhinav
    Wenzel, Wolfgang
    [J]. BMC STRUCTURAL BIOLOGY, 2007, 7
  • [7] Performance of An All-Atom Free Energy Approach For Protein Structure Prediction
    Anand, Priya
    Strunk, Timo
    Brieg, Martin
    Meliciani, Irene
    Wolf, Moritz
    Klenin, Konstantin
    Wenzel, Wolfgang
    [J]. BIOPHYSICAL JOURNAL, 2011, 100 (03) : 48 - 48
  • [8] Predictive folding of a β-hairpin protein in an all-atom free-energy model
    Wenzel, W.
    [J]. EUROPHYSICS LETTERS, 2006, 76 (01): : 156 - 162
  • [9] Exploring binding modes of the selected inhibitors to phosphodiesterase delta by all-atom molecular dynamics simulations and free energy calculations
    Zhong, Hui
    Zhang, Yan-Jun
    Shan, Xiao-Bin
    [J]. JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2019, 37 (09): : 2415 - 2429
  • [10] Cation Blocking Mechanisms of the KcsA Potassium Channel Explored with All-atom Free Energy Simulations
    Kim, Ilsoo
    Thompson, Ameer
    Nimigean, Crina
    Allen, Toby W.
    [J]. BIOPHYSICAL JOURNAL, 2009, 96 (03) : 660A - 660A