Riverine source of Arctic Ocean mercury inferred from atmospheric observations

被引:158
|
作者
Fisher, Jenny A. [1 ]
Jacob, Daniel J. [1 ]
Soerensen, Anne L. [2 ,3 ]
Amos, Helen M. [1 ]
Steffen, Alexandra [4 ]
Sunderland, Elsie M. [2 ,3 ]
机构
[1] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Harvard Univ, Harvard Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02215 USA
[4] Environm Canada, Air Qual Proc Res Sect, Toronto, ON M3H 5T4, Canada
基金
美国国家科学基金会;
关键词
DISSOLVED GASEOUS MERCURY; BOUNDARY-LAYER; BEAUFORT SEA; WATERS; REDUCTION; SNOWPACK; TRENDS; MODEL; MASS;
D O I
10.1038/ngeo1478
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Methylmercury is a potent neurotoxin that accumulates in aquatic food webs. Human activities, including industry and mining, have increased inorganic mercury inputs to terrestrial and aquatic ecosystems. Methylation of this mercury generates methylmercury, and is thus a public health concern. Marine methylmercury is a particular concern in the Arctic, where indigenous peoples rely heavily on marine-based diets. In the summer, atmospheric inorganic mercury concentrations peak in the Arctic, whereas they reach a minimum in the northern mid-latitudes. Here, we use a global three-dimensional ocean-atmosphere model to examine the cause of this Arctic summertime maximum. According to our simulations, circumpolar rivers deliver large quantities of mercury to the Arctic Ocean during summer; the subsequent evasion of this riverine mercury to the atmosphere can explain the summertime peak in atmospheric mercury levels. We infer that rivers are the dominant source of mercury to the Arctic Ocean on an annual basis. Our simulations suggest that Arctic Ocean mercury concentrations could be highly sensitive to climate-induced changes in river flow, and to increases in the mobility of mercury in soils, for example as a result of permafrost thaw and forest fires.
引用
收藏
页码:499 / 504
页数:6
相关论文
共 50 条
  • [1] Riverine source of Arctic Ocean mercury inferred from atmospheric observations
    Jenny A. Fisher
    Daniel J. Jacob
    Anne L. Soerensen
    Helen M. Amos
    Alexandra Steffen
    Elsie M. Sunderland
    [J]. Nature Geoscience, 2012, 5 : 499 - 504
  • [2] Arctic Ocean: Is It a Sink or a Source of Atmospheric Mercury?
    Dastoor, Ashu P.
    Durnford, Dorothy A.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (03) : 1707 - 1717
  • [3] Arctic Ocean: Is It a Sink or a Source of Atmospheric Mercury? (vol 48, pg 1707, 2014)
    Dastoor, Ashu P.
    Durnford, Dorothy A.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (16) : 9966 - 9966
  • [5] AN EQUATORIAL PACIFIC-OCEAN SOURCE OF ATMOSPHERIC MERCURY
    FITZGERALD, WF
    GILL, GA
    KIM, JP
    [J]. SCIENCE, 1984, 224 (4649) : 597 - 599
  • [6] INCREASE IN GLOBAL ATMOSPHERIC CONCENTRATIONS OF MERCURY INFERRED FROM MEASUREMENTS OVER THE ATLANTIC-OCEAN
    SLEMR, F
    LANGER, E
    [J]. NATURE, 1992, 355 (6359) : 434 - 437
  • [7] A decline in Arctic Ocean mercury suggested by differences in decadal trends of atmospheric mercury between the Arctic and northern midlatitudes
    Chen, Long
    Zhang, Yanxu
    Jacob, Daniel J.
    Soerensen, Anne L.
    Fisher, Jenny A.
    Horowitz, Hannah M.
    Corbitt, Elizabeth S.
    Wang, Xuejun
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (14) : 6076 - 6083
  • [8] Atmospheric observations of Arctic Ocean methane emissions up to 82° north
    Kort, E. A.
    Wofsy, S. C.
    Daube, B. C.
    Diao, M.
    Elkins, J. W.
    Gao, R. S.
    Hintsa, E. J.
    Hurst, D. F.
    Jimenez, R.
    Moore, F. L.
    Spackman, J. R.
    Zondlo, M. A.
    [J]. NATURE GEOSCIENCE, 2012, 5 (05) : 318 - 321
  • [9] Fate of elemental mercury in the arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the arctic
    Skov, H
    Christensen, JH
    Goodsite, ME
    Heidam, NZ
    Jensen, B
    Wåhlin, P
    Geernaert, G
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (08) : 2373 - 2382
  • [10] Atmospheric observations of Arctic Ocean methane emissions up to 82° north
    E. A. Kort
    S. C. Wofsy
    B. C. Daube
    M. Diao
    J. W. Elkins
    R. S. Gao
    E. J. Hintsa
    D. F. Hurst
    R. Jimenez
    F. L. Moore
    J. R. Spackman
    M. A. Zondlo
    [J]. Nature Geoscience, 2012, 5 (5) : 318 - 321