Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings in reflexive Banach spaces

被引:38
|
作者
Zhou, HY
Wei, L
Cho, YJ [1 ]
机构
[1] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[2] Gyeongsang Natl Univ, Coll Educ, Res Inst Nat Sci, Chinju 660701, South Korea
[3] Shijiazhuang Mech Engn Coll, Dept Math, Shijiazhuang 050003, Peoples R China
[4] Hebei Univ Econ & Business, Sch Math & Stat, Shijiazhuang 050091, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
nonexpansive mapping; Halpern's iterative sequence; control condition; common fixed point; Weng's lemma;
D O I
10.1016/j.amc.2005.02.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using some new analysis techniques, we study the approximation problems of common fixed points of Halpern's iterative sequence for a class of finite nonexpansive mappings in strictly convex and reflexive Banach spaces by using Banach's limit. The main results presented in this paper generalize, extend and improve the corresponding results of Bauschke [The approximation of fixed points of compositions of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 202 (1996) 150-159], Halpern [Fixed points of nonexpansive maps, Bull. Am. Math. Soc. 73 (1967) 957-961], Shoji and Takahashi [Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Am. Math. Soc. 125 (1997) 3641-3645], Takahashi et al. [Approximation of common fixed points of a family of finite nonexpansive mappings in Banach spaces, Sci. Math. Jpn. 56 (2002) 475-480], Wittmann [Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992) 486-491], Xu [Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002) 109-113, Remarks on an iterative method for nonexpansive mappings, Commun. Appl. Nonlinear Anal. 10 (2003) 67-75] and others. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:196 / 212
页数:17
相关论文
共 50 条