A ridgelet kernel approach for regression using particle swarm optimization algorithm

被引:0
|
作者
Yang, SY [1 ]
Wang, M [1 ]
Jiao, LC [1 ]
机构
[1] Xidian Univ, Dept Elect Engn, Inst Intelligent Informat Proc, Xian 710071, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a ridgelet kernel approach is proposed for approximation of multivariate functions, especially those with certain kinds of spatial inhomogeneities. It is based on ridgelet theory, kernel and regularization technology from which we can deduce a regularized kernel regression form. Taking the objective function solved by quadratic programming to define a fitness function, we use particle swarm optimization algorithm to optimize the directions of ridgelets. Experiments in the tasks of regression prove its efficiency.
引用
收藏
页码:2837 / 2842
页数:6
相关论文
共 50 条
  • [1] A New Fuzzy Identification Approach Using Support Vector Regression and Particle Swarm Optimization Algorithm
    Tian, WenJie
    Tian, Yue
    [J]. 2009 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL I, 2009, : 86 - +
  • [2] Gaussian Kernel Particle Swarm Optimization Clustering Algorithm
    Pei, Shengyu
    Tong, Lang
    [J]. 2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 198 - 204
  • [3] Ridgelet kernel regression
    Yang, Shuyuan
    Wang, Min
    Jiao, Licheng
    [J]. NEUROCOMPUTING, 2007, 70 (16-18) : 3046 - 3055
  • [4] A Particle Swarm Optimization Approach for Symbolic Regression
    Ma, Xuan
    Li, Xing
    Tang, Rong-Jun
    Liu, Qing
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (08): : 1714 - 1726
  • [5] Kernel Based Automatic Clustering Using Modified Particle Swarm Optimization Algorithm
    Abraham, Ajith
    Das, Swagatam
    Konar, Amit
    [J]. GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 2 - +
  • [6] A new ridgelet neural network training algorithm based on improved particle swarm optimization
    Su, Rijian
    Kong, Li
    Song, Shengli
    Zhang, Pu
    Zhou, Kaibo
    Cheng, Jingjing
    [J]. ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 3, PROCEEDINGS, 2007, : 411 - +
  • [7] Model selection of support vector regression using particle swarm optimization algorithm
    Yang, HZ
    Shao, XG
    Chen, G
    Ding, F
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 1417 - 1425
  • [8] Well Placement Optimization Using a Particle Swarm Optimization Algorithm, a Novel Approach
    Afshari, S.
    Pishvaie, M. R.
    Aminshahidy, B.
    [J]. PETROLEUM SCIENCE AND TECHNOLOGY, 2014, 32 (02) : 170 - 179
  • [9] A new approach to particle swarm optimization algorithm
    Gosciniak, Ireneusz
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (02) : 844 - 854
  • [10] An Approach Using Particle Swarm Optimization and Rational Kernel for Variable Length Data Sequence Optimization
    Raveendran, Saritha
    Vinodchandra, S. S.
    [J]. ADVANCES IN SWARM INTELLIGENCE, ICSI 2016, PT I, 2016, 9712 : 401 - 409