QR decomposition based orthogonality estimation for partially linear models with longitudinal data

被引:13
|
作者
Huang, Jiting [1 ]
Zhao, Peixin [2 ]
机构
[1] Hechi Univ, Coll Math & Stat, Yizhou 546300, Guangxi, Peoples R China
[2] Chongqing Technol & Business Univ, Coll Math & Stat, Chongqing 400067, Peoples R China
基金
中国国家自然科学基金;
关键词
Partially linear model; Longitudinal data; Orthogonality estimation; QR decomposition; QUADRATIC INFERENCE FUNCTIONS; GENERALIZED ESTIMATING EQUATIONS; VARYING-COEFFICIENT MODELS; SEMIPARAMETRIC REGRESSION;
D O I
10.1016/j.cam.2017.02.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the estimation for a class of partially linear models with longitudinal data. By combining quadratic inference functions with QR decomposition technology, we propose a new estimation method for the parametric and nonparametric components. The resulting estimators for parametric and nonparametric components do not affect each other, and then it is easy for application in practice. Under some mild conditions, we establish some asymptotic properties of the resulting estimators. Some simulation studies are undertaken to assess the finite sample performance of the proposed estimation procedure. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:406 / 415
页数:10
相关论文
共 50 条
  • [1] Nonconcave penalized estimation for partially linear models with longitudinal data
    Yang, Yiping
    Li, Gaorong
    Lian, Heng
    [J]. STATISTICS, 2016, 50 (01) : 43 - 59
  • [2] A new orthogonality-based estimation for varying-coefficient partially linear models
    Peixin Zhao
    Yiping Yang
    [J]. Journal of the Korean Statistical Society, 2019, 48 : 29 - 39
  • [3] A new orthogonality-based estimation for varying-coefficient partially linear models
    Zhao, Peixin
    Yang, Yiping
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (01) : 29 - 39
  • [4] A new orthogonality empirical likelihood for varying coefficient partially linear instrumental variable models with longitudinal data
    Zhao, Peixin
    Zhou, Xiaoshuang
    Wang, Xiuli
    Huang, Xingshou
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (12) : 3328 - 3344
  • [5] Efficient estimation in partially linear single-index models for longitudinal data
    Cai, Quan
    Wang, Suojin
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2019, 46 (01) : 116 - 141
  • [6] Robust estimation of partially linear models for longitudinal data with dropouts and measurement error
    Qin, Guoyou
    Zhang, Jiajia
    Zhu, Zhongyi
    Fung, Wing
    [J]. STATISTICS IN MEDICINE, 2016, 35 (29) : 5401 - 5416
  • [7] Orthogonality based penalized GMM estimation for variable selection in partially linear spatial autoregressive models
    Zhao, Peixin
    Gan, Haogeng
    Cheng, Suli
    Zhou, Xiaoshuang
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (06) : 1676 - 1691
  • [8] Efficient estimation in marginal partially linear models for Longitudinal/Clustered data using splines
    Huang, Jianhua Z.
    Zhang, Liangyue
    Zhou, Lan
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2007, 34 (03) : 451 - 477
  • [9] Variable selection and estimation for partially linear single-index models with longitudinal data
    Li, Gaorong
    Lai, Peng
    Lian, Heng
    [J]. STATISTICS AND COMPUTING, 2015, 25 (03) : 579 - 593
  • [10] Variable selection and estimation for partially linear single-index models with longitudinal data
    Gaorong Li
    Peng Lai
    Heng Lian
    [J]. Statistics and Computing, 2015, 25 : 579 - 593