Higher-order entanglement and many-body invariants for higher-order topological phases

被引:10
|
作者
You, Yizhi [1 ]
Bibo, Julian [2 ,3 ]
Pollmann, Frank [2 ,3 ]
机构
[1] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[2] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
[3] Munich Ctr Quantum Sci & Technol MQCST, D-80799 Munich, Germany
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Topology;
D O I
10.1103/PhysRevResearch.2.033192
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss how strongly interacting higher-order symmetry protected topological (HOSPT) phases can be characterized from the entanglement perspective: First, we introduce a topological many-body invariant which reveals the noncommutative algebra between a flux operator and C-n rotations. We argue that this invariant denotes the angular momentum carried by the instanton which is closely related to the discrete Wen-Zee response and the fractional corner charge. Second, we define a new entanglement property, dubbed "higher-order entanglement," to scrutinize and differentiate various higher-order topological phases from a hierarchical sequence of the entanglement structure. We support our claims by numerically studying a super-lattice Bose-Hubbard model that exhibits different HOSPT phases.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Entanglement signatures of multipolar higher-order topological phases
    Dubinkin, Oleg
    Hughes, Taylor L.
    [J]. PHYSICAL REVIEW B, 2023, 108 (15)
  • [2] Many-body quadrupolar sum rule for higher-order topological insulators
    Lee, Wonjun
    Cho, Gil Young
    Kang, Byungmin
    [J]. PHYSICAL REVIEW B, 2022, 105 (15)
  • [3] Higher-order renormalization of graphene many-body theory
    Gonzalez, J.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (08):
  • [4] HIGHER-ORDER GRAVITATIONAL POTENTIAL FOR MANY-BODY SYSTEM
    OHTA, T
    OKAMURA, H
    KIMURA, T
    HIIDA, K
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1974, 51 (04): : 1220 - 1238
  • [5] Higher-order renormalization of graphene many-body theory
    J. González
    [J]. Journal of High Energy Physics, 2012
  • [6] DIMENSIONAL REDUCTION AND HIGHER-ORDER TOPOLOGICAL INVARIANTS
    SHERRY, TN
    TCHRAKIAN, DH
    [J]. PHYSICS LETTERS B, 1984, 147 (1-3) : 121 - 126
  • [7] CALCULATION OF HIGHER-ORDER SENSITIVITIES AND HIGHER-ORDER SENSITIVITY INVARIANTS
    GEHER, K
    SOLYMOSI, J
    [J]. PERIODICA POLYTECHNICA-ELECTRICAL ENGINEERING, 1972, 16 (03): : 325 - 330
  • [8] Many-body higher-order topological invariant for C n-symmetric insulators
    Jahin, Ammar
    Lu, Yuan-Ming
    Wang, Yuxuan
    [J]. PHYSICAL REVIEW B, 2024, 109 (20)
  • [9] Network model for higher-order topological phases
    Liu, Hui
    Franca, Selma
    Moghaddam, Ali G.
    Hassler, Fabian
    Fulga, Ion Cosma
    [J]. PHYSICAL REVIEW B, 2021, 103 (11)
  • [10] Higher-order topological phases on fractal lattices
    Manna, Sourav
    Nandy, Snehasish
    Roy, Bitan
    [J]. PHYSICAL REVIEW B, 2022, 105 (20)