INEQUALITIES OF OPERATOR VALUED QUANTUM SKEW INFORMATION

被引:0
|
作者
Choi, Byoung Jin [1 ]
Lee, Mi Ra [2 ]
机构
[1] Jeju Natl Univ, Dept Math Educ, Jeju 63243, South Korea
[2] Chungbuk Natl Univ, Dept Math, Cheongju 28644, South Korea
基金
新加坡国家研究基金会;
关键词
Uncertainty relation; Wigner-Yanase-Dyson skew information; module operator; SCHRODINGER UNCERTAINTY RELATION;
D O I
10.4134/BKMS.b191089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study two operator-valued inequalities for quantum Wigner-Yanase-Dyson skew information related to module operators. These are extended results of the trace inequalities for Wigner-Yanase-Dyson skew information. Moreover, we study a sufficient condition to prove an uncertainty relation for operator-valued generalized quantum Wigner-Yanase-Dyson skew information related to module operators and a pair of functions (f,g). Also, we obtain several previous results of scalar-valued cases as a consequence of our main result.
引用
收藏
页码:59 / 70
页数:12
相关论文
共 50 条
  • [1] Inequalities for Quantum Skew Information
    Koenraad Audenaert
    Liang Cai
    Frank Hansen
    [J]. Letters in Mathematical Physics, 2008, 85 : 135 - 146
  • [2] Inequalities for quantum skew information
    Audenaert, Koenraad
    Cai, Liang
    Hansen, Frank
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2008, 85 (2-3) : 135 - 146
  • [3] Positive operator valued measure in quantum information processing
    Brandt, HE
    [J]. PHOTONIC QUANTUM COMPUTING II, 1998, 3385 : 23 - 35
  • [4] Positive operator valued measure in quantum information processing
    Brandt, HE
    [J]. AMERICAN JOURNAL OF PHYSICS, 1999, 67 (05) : 434 - 439
  • [5] Tripartite Bell-type inequalities for quantum coherence and skew information
    Qiu, Liang
    Pan, Fei
    Liu, Zhi
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2017, 15 (04)
  • [6] OPERATOR-VALUED INNER PRODUCT AND OPERATOR INEQUALITIES
    Fujii, Jun Ichi
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2008, 2 (02): : 59 - 67
  • [7] Operator valued inequalities based on Young’s inequality
    Hiroaki Tohyama
    Eizaburo Kamei
    Masayuki Watanabe
    [J]. Advances in Operator Theory, 2023, 8
  • [8] Operator valued inequalities based on Young's inequality
    Tohyama, Hiroaki
    Kamei, Eizaburo
    Watanabe, Masayuki
    [J]. ADVANCES IN OPERATOR THEORY, 2023, 8 (02)
  • [9] Bohr and Rogosinski inequalities for operator valued holomorphic functions
    Allu, Vasudevarao
    Halder, Himadri
    Pal, Subhadip
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 182
  • [10] Differential inequalities of operator-valued analytic functions
    Jian, M
    [J]. ACTA MATHEMATICA SCIENTIA, 2001, 21 (02) : 166 - 170