Electrochemical evaluation of rutile TiO2 nanoparticles as negative electrode for Li-ion batteries

被引:127
|
作者
Kubiak, P. [1 ]
Pfanzelt, M. [1 ]
Geserick, J. [2 ]
Hoermann, U. [3 ]
Huesing, N. [2 ]
Kaiser, U. [3 ]
Wohlfahrt-Mehrens, M. [1 ]
机构
[1] ZSW Ctr Solar Energy & Hydrogen Res, D-89081 Ulm, Germany
[2] Univ Ulm, Inst Inorgan Chem 1, D-89081 Ulm, Germany
[3] Univ Ulm, Electron Microscopy Grp Mat Sci, D-89081 Ulm, Germany
关键词
TiO2; Rutile; Anode material; Lithium ion battery; NANOCRYSTALLINE ANATASE; TEMPERATURE SYNTHESIS; NANO-IONICS; LITHIUM; PERFORMANCE; INSERTION; INTERCALATION; ADSORPTION; MORPHOLOGY; DIFFUSION;
D O I
10.1016/j.jpowsour.2009.06.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanosized rutile TiO2 has been prepared by sol-gel chemistry from a glycerol-modified titanium precursor in the presence of an anionic surfactant. The sample has been characterized by X-ray diffraction, nitrogen sorption, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and electrochemical tests. Nanosized rutile TiO2 has been electrochemically investigated using two potential windows: 1.2-3 V and 1-3 V. It exhibits excellent high rates capabilities and good cycling stability. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1099 / 1104
页数:6
相关论文
共 50 条
  • [1] Defective graphene decorated with TiO2 nanoparticles as negative electrode in Li-ion batteries
    Sidoli, Michele
    Magnani, Giacomo
    Fornasini, Laura
    Scaravonati, Silvio
    Morenghi, Alberto
    Vezzoni, Vincenzo
    Bersani, Danilo
    Bertoni, Giovanni
    Gaboardi, Mattia
    Ricco, Mauro
    Pontiroli, Daniele
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 958
  • [2] Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries
    Ryu, Won-Hee
    Nam, Do-Hwan
    Ko, Yoo-Sung
    Kim, Ryoung-Hee
    Kwon, Hyuk-Sang
    ELECTROCHIMICA ACTA, 2012, 61 : 19 - 24
  • [3] Aging effects of anatase TiO2 nanoparticles in Li-ion batteries
    Madej, E.
    Ventosa, E.
    Klink, S.
    Schuhmann, W.
    La Mantia, F.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (17) : 7939 - 7945
  • [4] Anodic TiO2 nanotubes as anode electrode in Li-air and Li-ion batteries
    Lee, Byung Gun
    Nam, Sang-Cheol
    Choi, Jinsub
    CURRENT APPLIED PHYSICS, 2012, 12 (06) : 1580 - 1585
  • [5] Electrochemical Conversion of CO2 into Negative Electrode Materials for Li-Ion Batteries
    Ge, Jianbang
    Hu, Liwen
    Wang, Wei
    Jiao, Handong
    Jiao, Shuqiang
    CHEMELECTROCHEM, 2015, 2 (02): : 224 - 230
  • [6] Nanocrystalline TiO2 (anatase) for Li-ion batteries
    Subramanian, V.
    Karki, A.
    Gnanasekar, K. I.
    Eddy, Fannie Posey
    Rambabu, B.
    JOURNAL OF POWER SOURCES, 2006, 159 (01) : 186 - 192
  • [7] Characteristics and Electrochemical Performance of TiO2:MWCNT Nanocomposite Anodes for Li-Ion Batteries
    Guler, M. O.
    Cetinkaya, T.
    Cevher, O.
    Tocoglu, U.
    Akbulut, H.
    ACTA PHYSICA POLONICA A, 2014, 125 (02) : 322 - 324
  • [8] An electrochemical and structural investigation of silicon nanowires as negative electrode for Li-ion batteries
    Barbara Laïk
    Diane Ung
    Amaël Caillard
    Costel Sorin Cojocaru
    Didier Pribat
    Jean-Pierre Pereira-Ramos
    Journal of Solid State Electrochemistry, 2010, 14 : 1835 - 1839
  • [9] An electrochemical and structural investigation of silicon nanowires as negative electrode for Li-ion batteries
    Laik, Barbara
    Ung, Diane
    Caillard, Amael
    Cojocaru, Costel Sorin
    Pribat, Didier
    Pereira-Ramos, Jean-Pierre
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (10) : 1835 - 1839
  • [10] Cobalt Carbodiimide as Negative Electrode for Li-Ion Batteries: Electrochemical Mechanism and Performance
    Arayamparambil, Jeethu Jiju
    Mann, Markus
    Fraisse, Bernard
    Iadecola, Antonella
    Dronskowski, Richard
    Stievano, Lorenzo
    Sougrati, Moulay Tahar
    CHEMELECTROCHEM, 2019, 6 (19): : 5101 - 5108