Black hole topology f (R) gravity

被引:14
|
作者
Mishra, Akash K. [1 ]
Rahman, Mostafizur [2 ]
Sarkar, Sudipta [1 ]
机构
[1] Indian Inst Technol, Gandhinagar 382355, Gujarat, India
[2] Jamia Millia Islamia, Ctr Theoret Phys, New Delhi 110025, India
关键词
Killing horizon; Euler characteristics; f (R) gravity; Yamabe invariant; conformal transformation; CENSORSHIP; HORIZONS;
D O I
10.1088/1361-6382/aacc20
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Hawking's topology theorem in general relativity restricts the cross-section of the event horizon of a black hole in 3 + 1 dimension to be either spherical or toroidal. The toroidal case is ruled out by the topology censorship theorems. In this article, we discuss the generalization of this result to black holes in f (R) gravity in 3 + 1 and higher dimensions. We obtain a sufficient differential condition on the function f' (R), which restricts the topology of the horizon cross-section of a black hole in f (R) gravity in 3 + 1 dimension to be either S-2 or S-1 x S-1. We also extend the result to higher dimensional black holes and show that the same sufficient condition also restricts the sign of the Yamabe invariant of the horizon cross-section.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Thermodynamic Topology of Topological Black Hole in F(R)-ModMax Gravity's Rainbow
    Panah, B. Eslam
    Hazarika, B.
    Phukon, P.
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2024, 2024 (08):
  • [2] Thermodynamic Topology of Black Holes in f(R) Gravity
    Hazarika, Bidyut
    Phukon, Prabwal
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2024, 2024 (04):
  • [3] Charged accelerating black hole in f(R) gravity
    Zhang, Ming
    Mann, Robert B.
    [J]. PHYSICAL REVIEW D, 2019, 100 (08)
  • [4] Instability of a Kerr black hole in f(R) gravity
    Myung, Yun Soo
    [J]. PHYSICAL REVIEW D, 2013, 88 (10):
  • [5] The black hole membrane paradigm in f(R) gravity
    Chatterjee, Saugata
    Parikh, Maulik
    Sarkar, Sudipta
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (03)
  • [6] Primordial Black Hole Merger Rate in f(R) Gravity
    Fakhry, Saeed
    [J]. ASTROPHYSICAL JOURNAL, 2024, 961 (01):
  • [7] Asymptotically Lifshitz black hole solutions in F(R) gravity
    Hendi, S. H.
    Panah, B. Eslam
    Corda, C.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2014, 92 (01) : 76 - 81
  • [8] Black hole shadow in f(R) gravity with nonlinear electrodynamics
    孙娇娇
    刘云旗
    钱卫良
    陈松柏
    岳瑞宏
    [J]. Chinese Physics C., 2023, 47 (02) - 263
  • [9] Black hole shadow in f(R) gravity with nonlinear electrodynamics
    孙娇娇
    刘云旗
    钱卫良
    陈松柏
    岳瑞宏
    [J]. Chinese Physics C, 2023, (02) : 256 - 263
  • [10] Shadow of a charged rotating black hole in f(R) gravity
    Sara Dastan
    Reza Saffari
    Saheb Soroushfar
    [J]. The European Physical Journal Plus, 137