Hierarchical Multi-task Learning with Application to Wafer Quality Prediction

被引:9
|
作者
He, Jingrui [1 ]
Zhu, Yada [1 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
hierarchical multi-task learning; wafer quality; task relatedness;
D O I
10.1109/ICDM.2012.63
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many real problems of multi-task learning exhibit hierarchical task relatedness. In other words, the tasks are partitioned into multiple groups. Different tasks within the same group are related on the task-level, whereas different groups are related on the group-level. For example, in semiconductor manufacturing, the problem of wafer quality prediction can be considered as hierarchical multi-task learning, where each task corresponds to a single side of a chamber with side-level relatedness, and a group of tasks corresponds to a chamber of multiple sides with chamber-level relatedness. Motivated by this application, in this paper, we propose an optimization framework for hierarchical multi-task learning, which partitions all the input features into 2 sets based on their characteristics, and models task-level and group-level relatedness by imposing different constraints on the coefficient vectors of the 2 sets. This is different from existing work on task clustering where the goal is to uncover the grouping of tasks, the tasks do not exhibit group-level relatedness, and the input features are not discriminated in the prediction model to model task-level and group-level relatedness. To solve this framework, we propose the HEAR algorithm based on block coordinate descent, and demonstrate its effectiveness on both synthetic and real data sets from domains of semiconductor manufacturing and document classification.
引用
收藏
页码:290 / 298
页数:9
相关论文
共 50 条
  • [1] Hierarchical Multi-Task Word Embedding Learning for Synonym Prediction
    Fei, Hongliang
    Tan, Shulong
    Li, Ping
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 834 - 842
  • [2] Water Quality Prediction Based on Multi-Task Learning
    Wu, Huan
    Cheng, Shuiping
    Xin, Kunlun
    Ma, Nian
    Chen, Jie
    Tao, Liang
    Gao, Min
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (15)
  • [3] Deep Multi-task Learning for Air Quality Prediction
    Wang, Bin
    Yan, Zheng
    Lu, Jie
    Zhang, Guangquan
    Li, Tianrui
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2018), PT V, 2018, 11305 : 93 - 103
  • [4] Hierarchical Prompt Learning for Multi-Task Learning
    Liu, Yajing
    Lu, Yuning
    Liu, Hao
    An, Yaozu
    Xu, Zhuoran
    Yao, Zhuokun
    Zhang, Baofeng
    Xiong, Zhiwei
    Gui, Chenguang
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 10888 - 10898
  • [5] Multi-task Learning with Application to Water Quality Monitoring
    Zhou Dalin
    Yu Binfeng
    Ji Haibo
    [J]. 2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 4696 - 4699
  • [6] Gated hierarchical multi-task learning network for judicial decision prediction
    Yao, Fanglong
    Sun, Xian
    Yu, Hongfeng
    Yang, Yang
    Zhang, Wenkai
    Fu, Kun
    [J]. NEUROCOMPUTING, 2020, 411 : 313 - 326
  • [7] Multi-task learning for pKa prediction
    Skolidis, Grigorios
    Hansen, Katja
    Sanguinetti, Guido
    Rupp, Matthias
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2012, 26 (07) : 883 - 895
  • [8] Multi-task learning for pKa prediction
    Grigorios Skolidis
    Katja Hansen
    Guido Sanguinetti
    Matthias Rupp
    [J]. Journal of Computer-Aided Molecular Design, 2012, 26 : 883 - 895
  • [9] HFedMTL: Hierarchical Federated Multi-Task Learning
    Yi, Xingfu
    Li, Rongpeng
    Peng, Chenghui
    Wu, Jianjun
    Zhao, Zhifeng
    [J]. 2022 IEEE 33RD ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2022,
  • [10] Evolving hierarchical memory-prediction machines in multi-task reinforcement learning
    Kelly, Stephen
    Voegerl, Tatiana
    Banzhaf, Wolfgang
    Gondro, Cedric
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2021, 22 (04) : 573 - 605