Extension of split perfectly matched absorbing layer for 2D wave propagation in porous transversely isotropic media

被引:2
|
作者
Qian, Jin [1 ,2 ]
Wu, Shiguo [1 ,2 ]
Cui, Ruofei [3 ]
机构
[1] Chinese Acad Sci, Key Lab Marine Geol & Environm, Qingdao 266071, Peoples R China
[2] Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China
[3] China Univ Min & Technol, Sch Resource & Geosci, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
modelling; perfectly matched absorbing layer; porous transversely isotropic media; staggered-grid finite-difference; FINITE-DIFFERENCE METHOD; DOUBLE-POROSITY MEDIA; HETEROGENEOUS MEDIA; POROELASTIC MEDIA; GRAZING-INCIDENCE; VELOCITY-STRESS; ELASTIC-WAVES; SEISMOGRAMS;
D O I
10.1071/EG12002
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The perfectly matched layer (PML) has proven to be efficient in absorbing outgoing waves in elastic and poroelastic media. It has not, however, been applied for porous anisotropic media. We develop the velocity-stress formulation for propagation of seismic waves for fluid-saturated porous anisotropic media with Biot's equations. Then we extend the split perfectly matched absorbing layer (SPML) to these media and describe the staggered-grid finite-difference scheme. Using fourth-order spatial operators and a second-order temporal operator under 2D Cartesian coordinates, we numerically solve the equations for the solid and fluid particle velocity components, and for the solid stress components and fluid pressure. The energy decay curve we show demonstrates that the algorithm can run stably. Results from the horizontally layered model show that the SPML model absorbs the outgoing wave well, which illustrates the algorithm is efficient for modelling in porous transversely isotropic media.
引用
收藏
页码:25 / 30
页数:6
相关论文
共 50 条
  • [1] Application of the nearly perfectly matched layer for seismic wave propagation in 2D homogeneous isotropic media
    Chen, Jingyi
    [J]. GEOPHYSICAL PROSPECTING, 2011, 59 (04) : 662 - 672
  • [2] Perfectly matched absorbing layer for modelling transient wave propagation in heterogeneous poroelastic media
    He, Yanbin
    Chen, Tianning
    Gao, Jinghuai
    [J]. JOURNAL OF GEOPHYSICS AND ENGINEERING, 2020, 17 (01) : 18 - 34
  • [3] A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: Stability analysis
    Meza-Fajardo, Kristel C.
    Papageorgiou, Apostolos S.
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2008, 98 (04) : 1811 - 1836
  • [4] Meshless method for wave propagation in poroelastic transversely isotropic half-space with the use of perfectly matched layer
    Shaker, Kamal
    Eskandari-Ghadi, Morteza
    Mohammadi, Soheil
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2024, : 3751 - 3779
  • [5] A residual perfectly matched layer for wave propagation in elastic media
    Luo, Yuqin
    Wang, Tao
    Li, Yongdong
    Cai, Ji
    Wang, Ying
    Fang, Guangyou
    [J]. ACTA GEOPHYSICA, 2024, 72 (03) : 1561 - 1573
  • [6] A residual perfectly matched layer for wave propagation in elastic media
    Yuqin Luo
    Tao Wang
    Yongdong Li
    Ji Cai
    Ying Wang
    Guangyou Fang
    [J]. Acta Geophysica, 2024, 72 : 1561 - 1573
  • [7] FINITE-DIFFERENCE ELASTIC-WAVE PROPAGATION IN 2D HETEROGENEOUS TRANSVERSELY ISOTROPIC MEDIA
    JUHLIN, C
    [J]. GEOPHYSICAL PROSPECTING, 1995, 43 (06) : 843 - 858
  • [8] Elastic modelling in tilted transversely isotropic media with convolutional perfectly matched layer boundary conditions
    Han, Byeongho
    Seol, Soon Jee
    Byun, Joongmoo
    [J]. EXPLORATION GEOPHYSICS, 2012, 43 (02) : 77 - 86
  • [9] Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation
    Hastings, FD
    Schneider, JB
    Broschat, SL
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 100 (05): : 3061 - 3069
  • [10] Wave simulation in 2D heterogeneous transversely isotropic porous media with fractional attenuation: A Cartesian grid approach
    Blanc, Emilie
    Chiavassa, Guillaume
    Lombard, Bruno
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 275 : 118 - 142