Optimisation of Data Acquisition in Wind Turbines with Data-Driven Conversion Functions for Sensor Measurements

被引:7
|
作者
Colone, L. [1 ]
Reder, M. [2 ]
Tautz-Weinert, J. [3 ]
Melero, J. J. [2 ]
Natarajan, A. [1 ]
Watson, S. J. [3 ]
机构
[1] Tech Univ Denmark, Frederiksborgvej 4000, Roskilde, Denmark
[2] CIRCE Univ Zaragoza, C Mariano Esquillor 15, Zaragoza 50018, Spain
[3] CREST Loughborough Univ, Holywell Pk, Loughborough LE11 3TU, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
Wind Turbine; Condition Monitoring; SCADA; Data Optimisation; Data Mining; Operation and Maintenance (O&M); COST-ANALYSIS;
D O I
10.1016/j.egypro.2017.10.386
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Operation and Maintenance (O&M) is an important cost driver of modern wind turbines. Condition monitoring (CM) allows the implementation of predictive O&M strategies helping to reduce costs. In this work a novel approach for wind turbine condition monitoring is proposed focusing on synergistic effects of coexisting sensing technologies. The main objective is to understand the predictability of signals using information from other measurements recorded at different locations of the turbine. The approach is based on a multi-step procedure to pre-process data, train a set of conversion functions and evaluate their performance. A subsequent sensitivity analysis measuring the impact of the input variables on the predicted response reveals hidden relationships between signals. The concept feasibility is tested in a case study using Supervisory Control And Data Acquisition (SCADA) data from an offshore turbine. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:571 / 578
页数:8
相关论文
共 50 条
  • [1] Data-Driven Modelling of Wind Turbines
    van der Veen, Gijs
    van Wingerden, Jan-Willem
    Verhaegen, Michel
    [J]. 2011 AMERICAN CONTROL CONFERENCE, 2011, : 72 - 77
  • [2] Data-driven Online Monitoring of Wind Turbines
    Kenbeek, Thomas
    Kapodistria, Stella
    Di Bucchianico, Alessandro
    [J]. PROCEEDINGS OF THE 12TH EAI INTERNATIONAL CONFERENCE ON PERFORMANCE EVALUATION METHODOLOGIES AND TOOLS (VALUETOOLS 2019), 2019, : 143 - 150
  • [3] Data-driven virtual sensor for online loads estimation of drivetrain of wind turbines
    Kamel, Omar
    Kretschmer, Matthias
    Pfeifer, Stefan
    Luhmann, Birger
    Hauptmann, Stefan
    Bottasso, Carlo L.
    [J]. FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 2023, 87 (01): : 31 - 38
  • [4] Anticipatory Control of Wind Turbines With Data-Driven Predictive Models
    Kusiak, Andrew
    Song, Zhe
    Zheng, Haiyang
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2009, 24 (03) : 766 - 774
  • [5] Data-driven characterization of performance trends in ageing wind turbines
    Murgia, Alessandro
    Cabral, Henrique
    Tsiporkova, Elena
    Astolfi, Davide
    Terzi, Ludovico
    [J]. WINDEUROPE ANNUAL EVENT 2023, 2023, 2507
  • [6] Data-driven estimation of blade icing risk in wind turbines
    Murtas, Giulia
    Cabral, Henrique
    Tsiporkova, Elena
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM, 2023, : 320 - 327
  • [7] Monitoring Wind Turbines' Unhealthy Status: A Data-Driven Approach
    Ouyang, Tinghui
    He, Yusen
    Huang, Heming
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2019, 3 (02): : 163 - 172
  • [8] Global data-driven modeling of wind turbines in the presence of turbulence
    van der Veen, G. J.
    van Wingerden, J. W.
    Fleming, P. A.
    Scholbrock, A. K.
    Verhaegen, M.
    [J]. CONTROL ENGINEERING PRACTICE, 2013, 21 (04) : 441 - 454
  • [9] A Data-Driven Approach for Sensor Fault Diagnosis in Gearbox of Wind Energy Conversion System
    Krueger, Minjia
    Ding, Steven X.
    Haghani, Adel
    Engel, Peter
    Jeinsch, Torsten
    [J]. 2013 10TH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2013, : 227 - 232
  • [10] A Data-Driven Approach for Components Useful Life Estimation in Wind Turbines
    Zornoza Martinez, Alejandro
    Martinez-Gomez, Jesus
    Gamez, Jose A.
    [J]. 16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2021), 2022, 1401 : 37 - 47