Stability analysis and bifurcation control of generalized phytoplankton-zooplankton system

被引:0
|
作者
Zhang, Qingling [1 ]
Chang, Yugen [1 ]
Niu, Hong [1 ]
Liu, Chao [2 ]
机构
[1] Northeastern Univ, Inst Syst Sci, Shenyang, Liaoning, Peoples R China
[2] Northeastern Univ Univ Qinhuangdao, Dept Informat & Computat Sci, Qinhuangdao, Peoples R China
基金
中国国家自然科学基金;
关键词
Differential-algebraic system; Positive equilibrium point; Jacobian matrix;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, a generalized Biological dynamical model of algal blooms is considered. The mathematical model consists of non-toxic phytoplankton, toxin producing phytoplankton, zooplankton with the economic values and harvest effort on zooplankton. In accordance with the knowledge of nonlinear dynamic system theory, differential-algebraic system theory and control theory investigates the stability of the model around the boundary equilibrium points and unique interior equilibrium point, and studies the dynamical behavior of the system near the positive equilibrium point and its control problem. Finally, using MATLAB software, numerical simulation illustrates the accuracy of the results.
引用
下载
收藏
页码:3188 / 3192
页数:5
相关论文
共 50 条
  • [1] Stability and bifurcation in a two harmful phytoplankton-zooplankton system
    Zhao, Jiantao
    Wei, Junjie
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1395 - 1409
  • [2] Bifurcation analysis in a diffusive phytoplankton-zooplankton model with harvesting
    Wang, Yong
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [3] Stability and Selective Harvesting of a Phytoplankton-Zooplankton System
    Wang, Yong
    Wang, Hongbin
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [4] Global Hopf Bifurcation in a Phytoplankton-Zooplankton System with Delay and Diffusion
    Liu, Ming
    Cao, Jun
    Xu, Xiaofeng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (08):
  • [5] Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting
    Meng, Xinyou
    Li, Jie
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (03) : 1973 - 2002
  • [6] NEIMARK-SACKER BIFURCATION AND STABILITY ANALYSIS IN A DISCRETE PHYTOPLANKTON-ZOOPLANKTON SYSTEM WITH HOLLING TYPE II FUNCTIONAL RESPONSE
    Shoyimardonov, Sobirjon
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 2048 - 2064
  • [7] Stability and global Hopf bifurcation in toxic phytoplankton-zooplankton model with delay and selective harvesting
    Wang, Yong
    Jiang, Weihua
    Wang, Hongbin
    NONLINEAR DYNAMICS, 2013, 73 (1-2) : 881 - 896
  • [8] Global bifurcation in a toxin producing phytoplankton-zooplankton system with prey-taxis
    Peng, Yahong
    Li, Yujing
    Zhang, Tonghua
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61
  • [9] IMPACT OF NOISE IN A PHYTOPLANKTON-ZOOPLANKTON SYSTEM
    Liao, Tiancai
    Yu, Hengguo
    Dai, Chuanjun
    Zhao, Min
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (05): : 1878 - 1896
  • [10] A stochastic analysis for a phytoplankton-zooplankton model
    Ge, Gen
    Wang, Hong-Li
    Xu, Jia
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96