We study Cooper-pair transport through a quantum point contact between a superconductor and a quantum Hall edge state at integer and fractional filling factors. We calculate the tunneling current and its finite-frequency noise to the leading order in the tunneling amplitude for dc and ac bias voltage in the limit of low temperatures. At zero temperature and in the case of tunneling into a single edge channel both the conductance and differential shot noise vanish as a result of the Pauli exclusion principle. In contrast, in the presence of two edge channels, this Pauli blockade is softened and a nonzero conductance and shot noise are revealed.