Path-Loss Prediction of Millimeter-wave using Machine Learning Techniques

被引:1
|
作者
Nunez, Yoiz [1 ]
Lovisolo, Lisandro [2 ]
Mello, Luiz da Silva [1 ]
Orihuela, Carlos [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Ctr Study Telecommun, Rio de Janeiro, Brazil
[2] Univ Estado Rio De Janeiro, Dept Elect & Telecommun, Rio De Janeiro, Brazil
关键词
Path-loss; Millimeter-wave; Machine learning; MODELS;
D O I
10.1109/LATINCOM56090.2022.10000523
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Millimeter-wave communication systems design require accurate path-loss prediction, critical to determining coverage area and system capacity. In this work, four machine learning algorithms are proposed for path-loss prediction in an indoor environment for 5G millimeter-wave frequencies, from 26.5 to 40 GHz. They are artificial neural network, support vector regression, random forest, and gradient tree boosting. We compare their performances, including extensions of the empirical path-loss models alpha-beta-gamma and close-in frequency-dependent exponent incorporating the number of crossed walls. The results show that the ML techniques improve the prediction accuracy of empirical models.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] On the interpretability of machine learning regression for path-loss prediction of millimeter-wave links ?
    Nunez, Yoiz
    Lovisolo, Lisandro
    Mello, Luiz da Silva
    Orihuela, Carlos
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 215
  • [2] Machine Learning Prediction for Phase-less Millimeter-Wave Beam Tracking
    Domae, Benjamin W.
    Boljanovic, Veljko
    Li, Ruifu
    Cabric, Danijela
    [J]. 2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [3] PATH-LOSS PREDICTION OF RADIO WAVE PROPAGATION IN AN ORCHARD BY USING MODIFIED UTD METHOD
    Phaebua, K.
    Phongcharoenpanich, C.
    Krairiksh, M.
    Lertwiriyaprapa, T.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2012, 128 : 347 - 363
  • [4] Path Loss Prediction in Tropical Regions using Machine Learning Techniques: A Case Study
    Famoriji, Oluwole John
    Shongwe, Thokozani
    [J]. ELECTRONICS, 2022, 11 (17)
  • [5] Enhancing Machine Learning Models for Path Loss Prediction Using Image Texture Techniques
    Sotiroudis, Sotirios P.
    Siakavara, Katherine
    Koudouridis, Georgios P.
    Sarigiannidis, Panagiotis
    Goudos, Sotirios K.
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (08): : 1443 - 1447
  • [6] MILLIMETER-WAVE TECHNIQUES
    KARP, A
    ALLISON, J
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION D-RADIO SCIENCE, 1964, D 68 (05): : 663 - +
  • [7] Path-loss prediction model for microcells
    Har, D
    Xia, HH
    Bertoni, HL
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 1999, 48 (05) : 1453 - 1462
  • [8] Analysis of Centimeter and Millimeter-Wave Path Loss at Emergency Exit
    Samad, Md. Abdus
    Choi, Dong-You
    Son, Hyungseop
    Choi, Kwonhue
    [J]. IEEE ACCESS, 2023, 11 : 34217 - 34226
  • [9] Millimeter-wave imaging using photonic techniques
    Sasaki, A
    Nagatsuma, T
    [J]. NTT REVIEW, 2002, 14 (06): : 32 - 41
  • [10] Machine Learning for Automating the Design of Millimeter-Wave Baluns
    Nguyen, Huy Thong
    Peterson, Andrew F.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2021, 68 (06) : 2329 - 2340