Immunoglobulin G3 blocking antibodies to the fungal pathogen Cryptococcus neoformans

被引:47
|
作者
Nussbaum, G
Yuan, RR
Casadevall, A
Scharff, MD
机构
[1] YESHIVA UNIV ALBERT EINSTEIN COLL MED,DEPT CELL BIOL,BRONX,NY 10461
[2] YESHIVA UNIV ALBERT EINSTEIN COLL MED,DEPT MED,BRONX,NY 10461
[3] YESHIVA UNIV ALBERT EINSTEIN COLL MED,DEPT MICROBIOL & IMMUNOL,BRONX,NY 10461
来源
JOURNAL OF EXPERIMENTAL MEDICINE | 1996年 / 183卷 / 04期
关键词
D O I
10.1084/jem.183.4.1905
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Vaccination and infection can elicit protective and nonprotective antibodies to the: fungus Cryptococcus neoformans in mice. The effect of nonprotective antibodies on host defense is unknown. In this study we used mixtures of protective and nonprotective monoclonal antibodies (mAbs) to determine if nonprotective mAbs blocked the activity of the protective mAbs. Antibody isotype and epitope specificity are important in determining the ability to prolong survival in mice given a lethal C. neoformans infection. Three different nonprotective immunoglobulin (Ig) G3 mAbs to cryptococcal capsular polysaccharide were used to study the interaction between the IgG3 isotype and protective IgG1 and IgG2a mAbs in murine cryptococcal infection. One IgG3 mAb reduced the protective efficacy of an IgG1 with identical epitope specificity. A second IgG3 mAb with different epitope specificity also reduced the protection provided by the IgG1 mAb. The protective efficacy of an IgG2a mAb was also dramatically decreased by still another IgG3 mAb. To our knowledge this is the first report of blocking antibodies to a fungal pathogen. The results have important implications for the development of vaccines and passive antibody therapy against C. neoformans.
引用
收藏
页码:1905 / 1909
页数:5
相关论文
共 50 条
  • [1] The Capsule of the Fungal Pathogen Cryptococcus neoformans
    Zaragoza, Oscar
    Rodrigues, Marcio L.
    De Jesus, Magdia
    Frases, Susana
    Dadachova, Ekaterina
    Casadevall, Arturo
    ADVANCES IN APPLIED MICROBIOLOGY, VOL 68, 2009, 68 : 133 - +
  • [2] Capsule synthesis in the fungal pathogen Cryptococcus neoformans
    Doering, Tamara L.
    GLYCOBIOLOGY, 2018, 28 (12) : 1016 - 1017
  • [3] Characterizing azole drugs in the fungal pathogen Cryptococcus neoformans
    Naqvi, Sakina
    Wilson, Jordyn
    Chandrasekaran, Srikripa
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2023, 299 (03) : S5 - S5
  • [4] Mechanisms of infection by the human fungal pathogen Cryptococcus neoformans
    Sabiiti, Wilber
    May, Robin C.
    FUTURE MICROBIOLOGY, 2012, 7 (11) : 1297 - 1313
  • [5] Iron acquisition in the human fungal pathogen Cryptococcus neoformans
    Jung, Won Hee
    Do, Eunsoo
    CURRENT OPINION IN MICROBIOLOGY, 2013, 16 (06) : 686 - 691
  • [6] The fungal pathogen Cryptococcus neoformans manipulates macrophage phagosome maturation
    Smith, Leanne M.
    Dixon, Emily F.
    May, Robin C.
    CELLULAR MICROBIOLOGY, 2015, 17 (05) : 702 - 713
  • [7] Development of positive selectable markers for the fungal pathogen Cryptococcus neoformans
    Hua, J
    Meyer, JD
    Lodge, JK
    CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY, 2000, 7 (01) : 125 - 128
  • [8] A nuclear-encoded intein in the fungal pathogen Cryptococcus neoformans
    Butler, MI
    Goodwin, TJD
    Poulter, RTM
    YEAST, 2001, 18 (15) : 1365 - 1370
  • [9] Characterization of the MFα pheromone of the human fungal pathogen Cryptococcus neoformans
    Davidson, RC
    Moore, TDE
    Odom, AR
    Heitman, J
    MOLECULAR MICROBIOLOGY, 2000, 38 (05) : 1017 - 1026
  • [10] Thioredoxin reductase is essential for viability in the fungal pathogen Cryptococcus neoformans
    Missall, TA
    Lodge, JK
    EUKARYOTIC CELL, 2005, 4 (02) : 487 - 489