A submicrometre silicon-on-insulator resonator for ultrasound detection

被引:98
|
作者
Shnaiderman, Rami [1 ,2 ]
Wissmeyer, Georg [1 ,2 ]
Uelgen, Okan [1 ,2 ]
Mustafa, Qutaiba [1 ,2 ]
Chmyrov, Andriy [1 ,2 ]
Ntziachristos, Vasilis [1 ,2 ]
机构
[1] Tech Univ Munich, Chair Biol Imaging & TranslaTUM, Munich, Germany
[2] Helmholtz Zentrum Munchen, Inst Biol & Med Imaging, Neuherberg, Germany
基金
欧洲研究理事会;
关键词
WAVE-GUIDE; PHOTOACOUSTIC MICROSCOPY; SUPERRESOLUTION; FABRICATION; TOMOGRAPHY;
D O I
10.1038/s41586-020-2685-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The widely available silicon-on-insulator technology is used to develop a miniaturized ultrasound detector, which is 200 times smaller than the wavelengths of sound that it can detect. Ultrasound detectors use high-frequency sound waves to image objects and measure distances, but the resolution of these readings is limited by the physical dimensions of the detecting element. Point-like broadband ultrasound detection can greatly increase the resolution of ultrasonography and optoacoustic (photoacoustic) imaging(1,2), but current ultrasound detectors, such as those used for medical imaging, cannot be miniaturized sufficiently. Piezoelectric transducers lose sensitivity quadratically with size reduction(3), and optical microring resonators(4)and Fabry-Perot etalons(5)cannot adequately confine light to dimensions smaller than about 50 micrometres. Micromachining methods have been used to generate arrays of capacitive(6)and piezoelectric(7)transducers, but with bandwidths of only a few megahertz and dimensions exceeding 70 micrometres. Here we use the widely available silicon-on-insulator technology to develop a miniaturized ultrasound detector, with a sensing area of only 220 nanometres by 500 nanometres. The silicon-on-insulator-based optical resonator design provides per-area sensitivity that is 1,000 times higher than that of microring resonators and 100,000,000 times better than that of piezoelectric detectors. Our design also enables an ultrawide detection bandwidth, reaching 230 megahertz at -6 decibels. In addition to making the detectors suitable for manufacture in very dense arrays, we show that the submicrometre sensing area enables super-resolution detection and imaging performance. We demonstrate imaging of features 50 times smaller than the wavelength of ultrasound detected. Our detector enables ultra-miniaturization of ultrasound readings, enabling ultrasound imaging at a resolution comparable to that achieved with optical microscopy, and potentially enabling the development of very dense ultrasound arrays on a silicon chip.
引用
收藏
页码:372 / +
页数:15
相关论文
共 50 条
  • [1] A submicrometre silicon-on-insulator resonator for ultrasound detection
    Rami Shnaiderman
    Georg Wissmeyer
    Okan Ülgen
    Qutaiba Mustafa
    Andriy Chmyrov
    Vasilis Ntziachristos
    [J]. Nature, 2020, 585 : 372 - 378
  • [2] Etched Silicon-on-Insulator Microring Resonator for Ultrasound Measurement
    Yang, Wenjian
    Song, Shijie
    Powell, Keith
    Tian, Xiaoyi
    Li, Liwei
    Linh Nguyen
    Yi, Xiaoke
    [J]. IEEE PHOTONICS JOURNAL, 2020, 12 (02):
  • [3] Active microring resonator devices in silicon-on-insulator
    Soref, Richard
    [J]. 2006 3RD IEEE INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS, 2006, : 16 - 18
  • [4] Design of a monolithic silicon-on-insulator resonator spiking neuron
    Tamura, Marcus
    Morison, Hugh
    Tait, Alexander N.
    Shastri, Bhavin J.
    [J]. COMMUNICATIONS PHYSICS, 2024, 7 (01):
  • [5] Monolithic Integration of Suspended Membrane Disk Resonator on Silicon-on-Insulator
    Cheng, Zhenzhou
    Xu, Ke
    Tsang, Hon Ki
    [J]. 2014 OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE AND AUSTRALIAN CONFERENCE ON OPTICAL FIBRE TECHNOLOGY (OECC/ACOFT 2014), 2014, : 266 - 268
  • [6] Tunable slow and fast light in a silicon-on-insulator Fano resonator
    Xu, T. I. A. N. Q. I.
    Zheng, S. H. A. O. N. A. N.
    Qiu, Y. A. N. G.
    Zhao, X. I. N. G. Y. A. N.
    Zhong, Q. I. Z. E.
    Dong, Y. U. A. N.
    Jia, L. I. A. N. X. I.
    Hu, T. I. N. G.
    [J]. OPTICS LETTERS, 2023, 48 (02) : 335 - 338
  • [7] A Silicon-on-Insulator Microring Resonator Filter with Bent Contradirectional Couplers
    Eid, Nourhan
    Boeck, Robert
    Jayatilleka, Hasitha
    Chrostowski, Lukas
    Shi, Wei
    Jaeger, Nicolas A. F.
    [J]. 2016 IEEE PHOTONICS CONFERENCE (IPC), 2016, : 115 - 116
  • [8] Grating-assisted silicon-on-insulator racetrack resonator reflector
    Boeck, Robert
    Caverley, Michael
    Chrostowski, Lukas
    Jaeger, Nicolas A. F.
    [J]. OPTICS EXPRESS, 2015, 23 (20): : 25509 - 25522
  • [9] Eigenmodes of finite length silicon-on-insulator microring resonator arrays
    B. Radjenović
    M. Radmilović-Radjenović
    P. Beličev
    [J]. Optical and Quantum Electronics, 2017, 49
  • [10] Quality factor of silicon-on-insulator Integrated Optical Ring Resonator
    Xue, Chenyang
    Jin, Yujian
    Tong, Xiaogang
    Cui, Danfeng
    Yan, Shubin
    Zhang, Wendong
    [J]. PHOTONIC FIBER AND CRYSTAL DEVICES: ADVANCES IN MATERIALS AND INNOVATIONS IN DEVICE APPLICATIONS V, 2011, 8120