Holography and thermalization in optical pump-probe spectroscopy

被引:10
|
作者
Bagrov, A. [1 ]
Craps, B. [2 ,3 ]
Galli, F. [4 ]
Keranen, V. [5 ]
Keski-Vakkuri, E. [5 ]
Zaanen, J. [6 ]
机构
[1] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[2] Vrije Univ Brussel, Theoret Nat Kunde, B-1050 Brussels, Belgium
[3] Int Solvay Inst, B-1050 Brussels, Belgium
[4] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[5] Univ Helsinki, Dept Phys, FI-00560 Helsinki, Finland
[6] Leiden Univ, Inst Lorentz Theoret Phys, NL-2333 CA Leiden, Netherlands
基金
美国国家科学基金会; 芬兰科学院;
关键词
D O I
10.1103/PhysRevD.97.086005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using holography, we model experiments in which a 2 + 1D strange metal is pumped by a laser pulse into a highly excited state, after which the time evolution of the optical conductivity is probed. We consider a finite-density state with mildly broken translation invariance and excite it by oscillating electric field pulses. At zero density, the optical conductivity would assume its thermalized value immediately after the pumping has ended. At finite density, pulses with significant dc components give rise to slow exponential relaxation, governed by a vector quasinormal mode. In contrast, for high-frequency pulses the amplitude of the quasinormal mode is strongly suppressed, so that the optical conductivity assumes its thermalized value effectively instantaneously. This surprising prediction may provide a stimulus for taking up the challenge to realize these experiments in the laboratory. Such experiments would test a crucial open question faced by applied holography: are its predictions artifacts of the large N limit or do they enjoy sufficient UV independence to hold at least qualitatively in real-world systems?
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Ultrafast thermalization dynamics of water nanodroplets by infrared pump-probe spectroscopy
    Seifert, G
    Patzlaff, T
    Graener, H
    [J]. ULTRAFAST PHENOMENA XIII, 2003, 71 : 514 - 516
  • [2] MULTIPLE MODULATION FOR OPTICAL PUMP-PROBE SPECTROSCOPY
    BADO, P
    WILSON, SB
    WILSON, KR
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1982, 53 (05): : 706 - 707
  • [3] Stroboscopic Tests for Thermalization of Electrons in Pump-Probe Experiments
    Matveev, O. P.
    Shvaika, A. M.
    Devereaux, T. P.
    Freericks, J. K.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (24)
  • [4] Pump-probe spectroscopy - Revisited
    Berman, PR
    [J]. FRONTIERS OF LASER PHYSICS AND QUANTUM OPTICS, 2000, : 173 - 186
  • [5] Optical pump-probe spectroscopy of photocarriers in rubrene single crystals
    Tao, Shoichi
    Matsuzaki, Hiroyuki
    Uemura, Hirotaka
    Yada, Hiroyuki
    Uemura, Takafumi
    Takeya, Jun
    Hasegawa, Tatsuo
    Okamoto, Hiroshi
    [J]. PHYSICAL REVIEW B, 2011, 83 (07):
  • [6] Asynchronous Optical Sampling for Ultrafast Pump-Probe Spectroscopy (Invited)
    Teng, Xiaodan
    Bai, Hanze
    Li, Quanming
    Mai, Haijing
    Xuan, Hongwen
    [J]. Guangxue Xuebao/Acta Optica Sinica, 2024, 44 (17):
  • [7] Thermalization of the Kerr index of refraction in acetone and methanol using femtosecond pump-probe scattering spectroscopy
    Meyer, Henry J.
    Alfano, Robert R.
    [J]. OPTIK, 2023, 284
  • [8] Inverse Problems in Pump-Probe Spectroscopy
    Tikhonov, Denis S.
    Garg, Diksha
    Schnell, Melanie
    [J]. PHOTOCHEM, 2024, 4 (01): : 57 - 110
  • [9] Pump-probe spectroscopy for the detection of bioaerosols
    Guyon, L.
    Courvoisier, F.
    Wood, V.
    Boutou, V.
    Bartelt, A.
    Roth, M.
    Rabitz, H.
    Wolf, J. P.
    [J]. JOURNAL DE PHYSIQUE IV, 2006, 135 : 185 - 186
  • [10] Coherence Freeze in an Optical Lattice Investigated Via Pump-Probe Spectroscopy
    Maneshi, Samansa
    Zhuang, Chao
    Paul, Christopher R.
    Cruz, Luciano S.
    Steinberg, Aephraim M.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (19)