A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents

被引:2
|
作者
Rodriguez-Cristerna, Arturo [1 ]
Torres-Jimenez, Jose [1 ]
机构
[1] CINVESTAV, Informat Technol Lab, Victoria Soto La Marina 87130, Cd Victoria Tam, Mexico
关键词
Addition Chains; Genetic Algorithms; OPTIMAL ADDITION CHAINS;
D O I
10.1007/978-3-642-35323-9_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Exponentiation is an important and complex task used in cryptosystems such RSA. The reduction of the number of multiplications needed during the exponentiation can significantly improve the execution time of cryptosystems. The problem of determining the minimal sequence of multiplications required for performing a modular exponentiation can be formulated using the concept of Brauer Chains. This paper, shows a new approach to face the problem of getting Brauer Chains of minimal length by using a Genetic Algorithm (GA). The implementation details of the GA includes a representation based on the Factorial Number System (FNS), a mixture of Neighborhood Functions (NF), a mixture of Distribution Functions (DF) and a fine-tuning process to set the parameter values. We compare the proposed GA approach with another relevant solutions presented in the literature by using three benchmarks considered difficult to show that it is a viable alternative to solve the problem of getting shortest Brauer Chains.
引用
收藏
页码:27 / 51
页数:25
相关论文
共 50 条
  • [1] A Mutation-Selection Algorithm for the Problem of Minimum Brauer Chains
    Rodriguez-Cristerna, Arturo
    Torres-Jimenez, Jose
    Rivera-Islas, Ivan
    Hernandez-Morales, Cindy G.
    Romero-Monsivais, Hillel
    Jose-Garcia, Adan
    [J]. ADVANCES IN SOFT COMPUTING, PT II, 2011, 7095 : 107 - 118
  • [2] A Genetic Algorithm with Repair and Local Search Mechanisms Able to Find Minimal Length Addition Chains for Small Exponents
    Osorio-Hernandez, Luis G.
    Mezura-Montes, Efren
    Cruz-Cortes, Nareli
    Rodriguez-Henriquez, Francisco
    [J]. 2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 1422 - +
  • [3] A Simulated Annealing Algorithm for the Problem of Minimal Addition Chains
    Jose-Garcia, Adan
    Romero-Monsivais, Hillel
    Hernandez-Morales, Cindy G.
    Rodriguez-Cristerna, Arturo
    Rivera-Islas, Ivan
    Torres-Jimenez, Jose
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE-BOOK, 2011, 7026 : 311 - +
  • [4] SCHOLZ-BRAUER PROBLEM ON ADDITION CHAINS
    THURBER, EG
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1973, 49 (01) : 229 - 242
  • [5] SCHOLZ-BRAUER PROBLEM ON ADDITION CHAINS
    THURBER, EG
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (07): : 1100 - &
  • [6] SCHOLZ-BRAUER PROBLEM IN ADDITION CHAINS
    GIOIA, AA
    SUGUNAMMA, M
    SUBBARAO, MV
    [J]. DUKE MATHEMATICAL JOURNAL, 1962, 29 (03) : 481 - &
  • [7] SCHOLZ-BRAUER PROBLEM IN ADDITION CHAINS
    GIOIA, AA
    SUBBARAO, MV
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A63 - A64
  • [8] SCHOLZ-BRAUER PROBLEM ON ADDITION CHAINS
    THURBER, EG
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A318 - A318
  • [9] A NOTE ON THE SCHOLZ-BRAUER PROBLEM IN ADDITION CHAINS
    UTZ, WR
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (04): : 376 - 376
  • [10] An adaptive genetic algorithm for the minimal switching graph problem
    Tang, ML
    [J]. EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2005, 3448 : 224 - 233