Geospatial-Temporal Analysis andClassification of Criminal Data in Manila

被引:0
|
作者
Baculo, Maria Jeseca C. [1 ]
Marzan, Charlie S. [1 ]
de Dios Bulos, Remedios [1 ]
Ruiz, Conrado [1 ]
机构
[1] De La Salle Univ, Manila, Philippines
关键词
classifiers; crime analysis; predictive methods;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The use of technology on criminal data has proven to be a valuable tool in forecasting criminal activity. Crime prediction is one of the approaches that help reduce and deter crimes. In this paper, we perform geospatial analysis using the kernel density estimation in ArcGIS 10 to identify the spatio-temporal hotspots in Manila, the most densely populated city in the Philippines. We also compared the performance measures of the BayesNet, Naive Bayes, J48, Decision Stump, and Random Forest classifiers in predicting possible crime activities. The results presented in this paper aim to provide insights on crime patterns as well as help law enforcement agencies design and implement approaches to respond to criminal activities.
引用
收藏
页码:6 / 11
页数:6
相关论文
共 50 条
  • [1] CoupledGT: Coupled Geospatial-temporal Data Modeling for Air Quality Prediction
    Ren, Siyuan
    Guo, Bin
    Li, Ke
    Wang, Qianru
    Wang, Qinfen
    Yu, Zhiwen
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (09)
  • [2] Geospatial-temporal analysis of the impact of ozone on asthma rescue inhaler use
    Pepper, Joshua R.
    Barrett, Meredith A.
    Su, Jason G.
    Merchant, Rajan
    Henderson, Kelly
    Van Sickle, David
    Balmes, John R.
    ENVIRONMENT INTERNATIONAL, 2020, 136
  • [3] Geospatial-temporal Analysis of Dengue Fever Based on the Bayesian Spatiotemporal Model
    Zhao, Rong
    Liang, Chen
    SENSORS AND MATERIALS, 2024, 36 (10) : 4361 - 4380
  • [4] A Nonparametric Model for Event Discovery in the Geospatial-Temporal Space
    Guo, Jinjin
    Gong, Zhiguo
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 499 - 508
  • [5] Visualizing Military Operations: Extended Geospatial-Temporal Survey
    Walsh, G.
    Andersen, N. S.
    Stoianov, N.
    Janicke, S.
    COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VISIGRAPP 2023, 2024, 2103 : 374 - 396
  • [6] Geospatial Data Integration for Criminal Analysis
    Pietak, Kamil
    Dajda, Jacek
    Wysokinski, Michal
    Idzik, Michal
    Lesniak, Lukasz
    MAN-MACHINE INTERACTIONS 4, ICMMI 2015, 2016, 391 : 461 - 471
  • [7] DICER: Data Intensive Computing Environment and Runtime for Evaluating Unprecedented Scale of Geospatial-Temporal Human Mobility Data
    De, Debraj
    Thakur, Gautam Malviya
    McGaha, Jesse
    Brown, Chance
    Nie, Xiuling
    Thomas, Todd
    Gaboardi, James D.
    Sparks, Kevin
    Burger, Annetta
    McBride, Elizabeth C.
    Kim, Joon-Seok
    Amichi, Licia
    Gunaratne, Chathika
    Christopher, Carter
    Zubko, Dan
    PROCEEDINGS OF THE 2024 25TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT, MDM 2024, 2024, : 139 - 148
  • [8] Geospatial-Temporal and Demand Models for Opioid Admissions, Implications for Policy
    Fulton, Lawrence
    Dong, Zhijie
    Zhan, F. Benjamin
    Kruse, Clemens Scott
    Granados, Paula Stigler
    JOURNAL OF CLINICAL MEDICINE, 2019, 8 (07):
  • [9] HIV risk factors among adolescent and young adults: A geospatial-temporal analysis of Mozambique AIDS indicator survey data
    Muleia, Rachid
    Aerts, Marc
    Loquiha, Osvaldo
    Faes, Christel
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2022, 41
  • [10] Next-generation geospatial-temporal information technologies for disaster management
    Albrecht, C. M.
    Elmegreen, B.
    Gunawan, O.
    Hamann, H. F.
    Klein, L. J.
    Lu, S.
    Mariano, F.
    Siebenschuh, C.
    Schmude, J.
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2020, 64 (1-2)