HQL: A Scalable Synchronization Mechanism for GPUs

被引:15
|
作者
Yilmazer, Ayse [1 ]
Kaeli, David [1 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
关键词
Mutual-exclusion; synchronization; GPUs; ALGORITHMS;
D O I
10.1109/IPDPS.2013.82
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Modern GPUs rely on atomic operations to perform global communication. These atomic operations can be used to construct finer-grained locks to provide support for mutual exclusion. However, equipped with only these basic synchronization primitives to support mutual exclusion results in inefficient use of resources. In this paper, we propose a new hardware-based blocking synchronization mechanism which uses hierarchical queuing for scalability and efficiency. We evaluate our design using a set of GPU applications for stressing synchronization mechanisms. We perform detailed simulation utilizing the Multi2Sim heterogeneous simulation infrastructure. Our results indicate that we can reduce the number of instructions executed by a GPU application by as much as 84%, while improving execution performance by as much as 73%.
引用
收藏
页码:475 / 486
页数:12
相关论文
共 50 条
  • [1] Scalable b-Matching on GPUs
    Naim, Md
    Manne, Fredrik
    [J]. 2018 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2018), 2018, : 637 - 646
  • [2] A scalable queue for work distribution on GPUs
    Kerbl B.
    Müller J.
    Kenzel M.
    Schmalstieg D.
    Steinberger M.
    [J]. 2018, Association for Computing Machinery, 2 Penn Plaza, Suite 701, New York, NY 10121-0701, United States (53): : 401 - 402
  • [3] Scalable Programmable Motion Effects on GPUs
    Huang, Xuezhen
    Hou, Qiming
    Ren, Zhong
    Zhou, Kun
    [J]. COMPUTER GRAPHICS FORUM, 2012, 31 (07) : 2259 - 2266
  • [4] Scalable and Fast Lazy Persistency on GPUs
    Yudha, Ardhi Wiratama Baskara
    Kimura, Keiji
    Zhou, Huiyang
    Solihin, Yan
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION (IISWC 2020), 2020, : 252 - 263
  • [5] ezLDA: Efficient and Scalable LDA on GPUs
    Wang, Shilong
    Liu, Hang
    Gaihre, Anil
    Yu, Hengyong
    [J]. IEEE ACCESS, 2023, 11 : 100165 - 100179
  • [6] A Scalable Queue for Work Distribution on GPUs
    Kerbl, Bernhard
    Mueller, Joerg
    Kenzel, Michael
    Schmalstieg, Dieter
    Steinberger, Markus
    [J]. ACM SIGPLAN NOTICES, 2018, 53 (01) : 401 - 402
  • [7] Scalable Prototype Learning Using GPUs
    Su, Tonghua
    Li, Songze
    Ma, Peijun
    Deng, Shengchun
    Liang, Guangsheng
    [J]. IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT I, 2014, 8814 : 309 - 319
  • [8] Efficient and Scalable k‑Means on GPUs
    Clemens Lutz
    Sebastian Breß
    Tilmann Rabl
    Steffen Zeuch
    Volker Markl
    [J]. Datenbank-Spektrum, 2018, 18 (3) : 157 - 169
  • [9] Scalable Energy Games Solvers on GPUs
    Formisano, Andrea
    Gentilini, Raffaella
    Vella, Flavio
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (12) : 2970 - 2982
  • [10] Stadium Hashing: Scalable and Flexible Hashing on GPUs
    Khorasani, Farzad
    Belviranli, Mehmet E.
    Gupta, Rajiv
    Bhuyan, Laxmi N.
    [J]. 2015 INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURE AND COMPILATION (PACT), 2015, : 63 - 74