Mesoscale Particle-Based Model of Electrophoretic Deposition

被引:25
|
作者
Giera, Brian [1 ]
Zepeda-Ruiz, Luis A. [1 ]
Pascall, Andrew J. [1 ]
Weisgraber, Todd H. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
CERAMICS; CATAPHORESIS; SUSPENSIONS; DYNAMICS; KINETICS; FILMS;
D O I
10.1021/acs.langmuir.6b04010
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present and evaluate a semiempirical particle-based model of electrophoretic deposition using extensive mesoscale simulations. We analyze particle configurations in order to observe how colloids accumulate at the electrode and arrange into deposits. In agreement with existing continuum models, the thickness of the deposit increases linearly in time during deposition. Resulting colloidal deposits exhibit a transition between highly ordered and bulk disordered regions that can give rise to an appreciable density gradient under certain simulated conditions. The overall volume fraction increases and falls within a narrow range as the driving force due to the electric field increases and repulsive intercolloidal interactions decrease. We postulate ordering and stacking within the initial layer(s) dramatically impacts the microstructure of the deposits. We find a combination of parameters, i.e., electric field and suspension properties, whose interplay enhances colloidal ordering beyond the commonly known approach of only reducing the driving force.
引用
收藏
页码:652 / 661
页数:10
相关论文
共 50 条
  • [1] Mesoscale Particle-Based Model of Electrophoresis
    Giera, Brian
    Zepeda-Ruiz, Luis A.
    Pascall, Andrew J.
    Kuntz, Joshua D.
    Spadaccini, Christopher M.
    Weisgraber, Todd H.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (11) : D3030 - D3035
  • [2] Particle-based simulations of electrophoretic deposition with adaptive physics models
    Karnes, John J.
    Pascall, Andrew J.
    Rehbock, Christoph
    Ramesh, Vaijayanthi
    Worsley, Marcus A.
    Barcikowski, Stephan
    Lee, Elaine
    Giera, Brian
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2024, 297
  • [3] Particle-based mesoscale hydrodynamic techniques
    Noguchi, H.
    Kikuchi, N.
    Gompper, G.
    [J]. EPL, 2007, 78 (01)
  • [4] Particle-based Ising model
    Novinger, Quentin
    Suma, Antonio
    Sigg, Daniel
    Gonnella, Giuseppe
    Carnevale, Vincenzo
    [J]. PHYSICAL REVIEW E, 2021, 103 (01)
  • [5] A hydrodynamic model for particle clustering in electrophoretic deposition
    Feng, J
    Xu, Y
    [J]. MICROFLUIDIC DEVICES AND SYSTEMS II, 1999, 3877 : 130 - 138
  • [6] Particle-based model for skiing traffic
    Holleczek, Thomas
    Troester, Gerhard
    [J]. PHYSICAL REVIEW E, 2012, 85 (05)
  • [7] Multiparticle collision dynamics: GPU accelerated particle-based mesoscale hydrodynamic simulations
    Westphal, E.
    Singh, S. P.
    Huang, C. -C.
    Gompper, G.
    Winkler, R. G.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (02) : 495 - 503
  • [8] Particle-based multidimensional multispecies Biofilm model
    Picioreanu, C
    Kreft, JU
    van Loosdrecht, MCM
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (05) : 3024 - 3040
  • [9] A particle-based mechanistic model for drape simulation
    Sze, KY
    Liu, XH
    Wang, C
    [J]. COMPUTATIONAL METHODS IN ENGINEERING AND SCIENCE, PROCEEDINGS, 2003, : 231 - 238
  • [10] A particle-based model for the transport of erythrocytes in capillaries
    Hosseini, S. Majid
    Feng, James J.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2009, 64 (22) : 4488 - 4497