Camera Model Identification using Deep CNN and Transfer Learning Approach

被引:0
|
作者
Al Banna, Md Hasan [1 ]
Haider, Md Ali [1 ]
Al Nahian, Md Jaber [1 ]
Islam, Md Maynul [1 ]
Abu Taher, Kazi [1 ]
Kaiser, M. Shamim [2 ]
机构
[1] Bangladesh Univ Profess, Dept Informat & Commun Engn, Dhaka, Bangladesh
[2] Jahangirnagar Univ, Inst Informat Technol, Dhaka, Bangladesh
关键词
image forensic; MobileNet; Deep CNN; Machine Learning; Classification;
D O I
10.1109/icrest.2019.8644194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The forensic investigation on digital images is to assess the authenticity of images without the embedded security on the images. The camera model identification is the first step for image forensic investigation. The paper proposes the deep Convolutional Neural Network and transfer learning approach for extracting features from an images dataset. An open image dataset of 3900 images have been created using three camera models. Three state-of-the-art machine learning algorithms such as SVM, logistic regression and random forest based classifiers have been used for evaluating identification accuracy.
引用
收藏
页码:626 / 630
页数:5
相关论文
共 50 条
  • [1] Deep Learning-Based CNN Multi-Modal Camera Model Identification for Video Source Identification
    Singh, Surjeet
    Sehgal, Vivek Kumar
    [J]. Informatica (Slovenia), 2023, 47 (03): : 417 - 430
  • [2] A Preliminary Approach to Using PRNU Based Transfer Learning for Camera Identification
    Seshadri, Sharan
    Akshatha, K. R.
    Karunakar, A. K.
    Paul, Kelvin Harrison
    [J]. ADVANCES IN COMPUTER VISION, VOL 2, 2020, 944 : 246 - 255
  • [3] A Deep CNN Approach with Transfer Learning for Image Recognition
    Iorga, Cristian
    Neagoe, Victor-Emil
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2019), 2019,
  • [4] A VIDEO CAMERA MODEL IDENTIFICATION SYSTEM USING DEEP LEARNING AND FUSION
    Hosler, B.
    Mayer, O.
    Bayar, B.
    Zhao, X.
    Chen, C.
    Shackleford, J. A.
    Stamm, M. C.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8271 - 8275
  • [5] A Novel Approach to Detect Brain Tumor Using CNN model of Deep Learning
    Pardhi, Praful
    Verma, Navya
    Loya, Nikunj
    Agrawal, Kartik
    [J]. INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2023, 14 (01): : 127 - 135
  • [6] TOWARDS OPEN SET CAMERA MODEL IDENTIFICATION USING A DEEP LEARNING FRAMEWORK
    Bayar, Belhassen
    Stamm, Matthew C.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2007 - 2011
  • [7] Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach
    Hassan, Sk Mahmudul
    Maji, Arnab Kumar
    Jasinski, Michal
    Leonowicz, Zbigniew
    Jasinska, Elzbieta
    [J]. ELECTRONICS, 2021, 10 (12)
  • [8] Spectrum sensing and modulation recognition using a novel CNN Deep Learning model and Learning transfer technique
    Mahieddine, Mohamed Ben Mohammed
    Bassou, Abdesselam
    Chouakri, Sid Ahmed
    Mellah, Nesrine
    Khelifi, Mustapha
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2023, 99 (05): : 93 - 97
  • [9] Transfer learning approach for pediatric pneumonia diagnosis using channel attention deep CNN architectures
    Prakash, J. Arun
    Asswin, C. R.
    Kumar, K. S. Dharshan
    Dora, Avinash
    Ravi, Vinayakumar
    Sowmya, V
    Gopalakrishnan, E. A.
    Soman, K. P.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [10] Facial Emotion Recognition Using Transfer Learning in the Deep CNN
    Akhand, M. A. H.
    Roy, Shuvendu
    Siddique, Nazmul
    Kamal, Md Abdus Samad
    Shimamura, Tetsuya
    [J]. ELECTRONICS, 2021, 10 (09)