Spatio-Temporal Variation of Conversational Utterances on Twitter

被引:4
|
作者
Alis, Christian M. [1 ]
Lim, May T. [1 ]
机构
[1] Univ Philippines, Natl Inst Phys, Quezon City 1101, Philippines
来源
PLOS ONE | 2013年 / 8卷 / 10期
关键词
SENTENCE LENGTH; FREQUENT;
D O I
10.1371/journal.pone.0077793
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conversations reflect the existing norms of a language. Previously, we found that utterance lengths in English fictional conversations in books and movies have shortened over a period of 200 years. In this work, we show that this shortening occurs even for a brief period of 3 years (September 2009-December 2012) using 229 million utterances from Twitter. Furthermore, the subset of geographically-tagged tweets from the United States show an inverse proportion between utterance lengths and the state-level percentage of the Black population. We argue that shortening of utterances can be explained by the increasing usage of jargon including coined words.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] TweeProfiles: Detection of Spatio-temporal Patterns on Twitter
    Cunha, Tiago
    Soares, Carlos
    Rodrigues, Eduarda Mendes
    [J]. ADVANCED DATA MINING AND APPLICATIONS, ADMA 2014, 2014, 8933 : 123 - 136
  • [2] Mining Rainfall Spatio-Temporal Patterns in Twitter: A Temporal Approach
    de Andrade, Sidgley Camargo
    Restrepo-Estrada, Camilo
    Delbem, Alexandre C. B.
    Mendiondo, Eduardo Mario
    de Albuquerque, Joao Porto
    [J]. SOCIETAL GEO-INNOVATION, 2017, : 19 - 37
  • [3] Pulse of the City: Spatio-Temporal Twitter Content Analysis
    Lu, Yunan
    Kusmik, William A.
    Turaga, Deepak S.
    [J]. 2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW 2020), 2020, : 33 - 39
  • [4] Event Detection using Twitter: A Spatio-Temporal Approach
    Cheng, Tao
    Wicks, Thomas
    [J]. PLOS ONE, 2014, 9 (06):
  • [5] Twitter Event Detection Under Spatio-Temporal Constraints
    Fei, Gaolei
    Cheng, Yong
    Liu, Yang
    Liu, Zhuo
    Hu, Guangmin
    [J]. ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2019, PT II, 2020, 11945 : 682 - 694
  • [6] Modelling of spatio-temporal variation of snowcover
    Schaumberger, Andreas
    Formayer, Herbert
    Tiefenbach, Priska
    Grillenberger, Joerg
    Strobl, Josef
    [J]. MITTEILUNGEN DER OSTERREICHISCHEN GEOGRAPHISCHEN GESELLSCHAFT, 2008, 150 : 163 - 182
  • [7] Spatio-Temporal Multiple Geo-Location Identification on Twitter
    Ghoorchian, Kambiz
    Girdzijauskas, Sarunas
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 3412 - 3421
  • [8] TweeProfiles3: visualization of spatio-temporal patterns on Twitter
    Maia, Andre
    Cunha, Tiago
    Soares, Carlos
    Abreu, Pedro Henriques
    [J]. NEW ADVANCES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 1, 2016, 444 : 869 - 878
  • [9] A Tool for Spatio-Temporal Analysis of Social Anxiety with Twitter Data
    Lee, Joohong
    Sohn, Dongyoung
    Choi, Yong Suk
    [J]. SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 2120 - 2123
  • [10] Spatio-Temporal and Events Based Analysis of Topic Popularity in Twitter
    Ardon, Sebastien
    Bagchi, Amitabha
    Mahanti, Anirban
    Ruhela, Amit
    Seth, Aaditeshwar
    Tripathy, Rudra Mohan
    Triukose, Sipat
    [J]. PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 219 - 228