Growing self-organizing trees for autonomous hierarchical clustering

被引:5
|
作者
Doan, Nhat-Quang [1 ]
Azzag, Hanane [1 ]
Lebbah, Mustapha [1 ]
机构
[1] Univ Paris 13, CNRS, LIPN, UMR 7030, F-93430 Villetaneuse, France
关键词
Clustering; Growing network; Data visualization; Self-organizing model; Hierarchical tree;
D O I
10.1016/j.neunet.2012.08.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new unsupervised learning method based on growing processes and autonomous self-assembly rules. This method, called Growing Self-organizing Trees (GSoT), can grow both network size and tree topology to represent the topological and hierarchical dataset organization, allowing a rapid and interactive visualization. Tree construction rules draw inspiration from elusive properties of biological organization to build hierarchical structures. Experiments conducted on real datasets demonstrate good GSoT performance and provide visual results that are generated during the training process. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 50 条
  • [1] Growing Hierarchical Self-Organizing Map for Images Hierarchical Clustering
    Buczek, Bartlomiej M.
    Myszkowski, Pawel B.
    [J]. COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, PT I, 2011, 6922 : 52 - 61
  • [2] Hierarchical clustering of document archives with the Growing Hierarchical Self-Organizing Map
    Dittenbach, M
    Merkl, D
    Rauber, A
    [J]. ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 500 - 505
  • [3] The growing hierarchical self-organizing map
    Dittenbach, M
    Merkl, D
    Rauber, A
    [J]. IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL VI, 2000, : 15 - 19
  • [4] Growing hierarchical self-organizing map computation approach for clustering in cellular manufacturing
    Chattopadhyay, Manojit
    Das, Nityananda
    Dan, Pranab K.
    Mazumdar, Sitanath
    [J]. JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2012, 29 (03) : 181 - 192
  • [5] Fuzzy Growing Hierarchical Self-Organizing Networks
    Barreto-Sanz, Miguel
    Perez-Uribe, Andres
    Pena-Reyes, Carlos-Andres
    Tomassini, Marco
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT II, 2008, 5164 : 713 - +
  • [6] Growing Hierarchical Probabilistic Self-Organizing Graphs
    Lopez-Rubio, Ezequiel
    Jose Palomo, Esteban
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (07): : 997 - 1008
  • [7] A growing self-organizing algorithm for dynamic clustering
    Ohta, R
    Saito, T
    [J]. IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 469 - 473
  • [8] Comparison of visualization of optimal clustering using self-organizing map and growing hierarchical self-organizing map in cellular manufacturing system
    Chattopadhyay, Manojit
    Dan, Pranab K.
    Mazumdar, Sitanath
    [J]. APPLIED SOFT COMPUTING, 2014, 22 : 528 - 543
  • [9] Reliable hierarchical clustering with the self-organizing map
    Samsonova, EV
    Bäck, T
    Kok, JN
    IJzerman, AP
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS VI, PROCEEDINGS, 2005, 3646 : 385 - 396
  • [10] A dynamically growing self-organizing tree (DGSOT) for hierarchical clustering gene expression profiles
    Luo, F
    Khan, L
    Bastani, F
    Yen, IL
    Zhou, JZ
    [J]. BIOINFORMATICS, 2004, 20 (16) : 2605 - 2617