ROBUST MIXTURE MODELS FOR ANOMALY DETECTION

被引:0
|
作者
Barkan, Oren [1 ]
Averbuch, Amir [1 ]
机构
[1] Tel Aviv Univ, Tel Aviv, Israel
关键词
INTRUSION DETECTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose robust density estimation in a low dimensional space for anomaly detection. The outline of the method is as follows: first a low dimensional representation of the original data is learnt. Then, a robust density mixture model is estimated in the learnt space. Finally, the likelihood of a data point given the model parameters is used to apply anomaly detection. An efficient way for adapting the model parameters when the data distribution is changing with time is proposed. We further show how to identify the actual parameters in the original feature space that accounts for the occurrence of the anomaly. We present experimental results that demonstrate the effectiveness of the proposed methods.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Mixture models for anomaly detection in hyperspectral imagery
    Willis, CJ
    [J]. MILITARY REMOTE SENSING, 2004, 5613 : 119 - 128
  • [2] IMPROVING ANOMALY DETECTION WITH MULTINORMAL MIXTURE MODELS IN SHADOW
    Haavardsholm, Trym
    Kavara, Amela
    Kasen, Ingebjorg
    Skauli, Torbjorn
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 5478 - 5481
  • [3] Robust ellipse detection with Gaussian mixture models
    Arellano, Claudia
    Dahyot, Rozenn
    [J]. PATTERN RECOGNITION, 2016, 58 : 12 - 26
  • [4] Anomaly Detection System Using Beta Mixture Models and Outlier Detection
    Moustafa, Nour
    Creech, Gideon
    Slay, Jill
    [J]. PROGRESS IN COMPUTING, ANALYTICS AND NETWORKING, ICCAN 2017, 2018, 710 : 125 - 135
  • [5] Network Anomaly Detection using Fuzzy Gaussian Mixture Models
    Tran, Dat
    Ma, Wanli
    Sharma, Dharmendra
    [J]. INTERNATIONAL JOURNAL OF FUTURE GENERATION COMMUNICATION AND NETWORKING, 2008, 1 (01): : 37 - 42
  • [6] A Model-Driven Deep Mixture Network for Robust Hyperspectral Anomaly Detection
    Li, Yunsong
    Jiang, Kai
    Xie, Weiying
    Lei, Jie
    Zhang, Xin
    Du, Qian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [7] Hybrid Subspace Mixture Models for Prediction and Anomaly Detection in High Dimensions
    Ong, Jenn-Bing
    Ng, Wee-Keong
    [J]. ADVANCED DATA MINING AND APPLICATIONS, ADMA 2017, 2017, 10604 : 326 - 339
  • [8] Performance Evaluation of Adversarial Learning for Anomaly Detection using Mixture Models
    Pawar, Yogesh
    Amayri, Manar
    Bouguila, Nizar
    [J]. 2021 22ND IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2021, : 913 - 918
  • [9] Anomaly Detection in Crowded Scenarios Using Local and Global Gaussian Mixture Models
    Tome, Adrian
    Salgado, Luis
    [J]. ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS (ACIVS 2017), 2017, 10617 : 363 - 374
  • [10] Anomaly Detection in IDSs by means of unsupervised greedy learning of finite mixture models
    Nicola Greggio
    [J]. Soft Computing, 2018, 22 : 3357 - 3372