Vine constructions of Levy copulas

被引:8
|
作者
Grothe, Oliver [1 ]
Nicklas, Stephan [1 ]
机构
[1] Univ Cologne, Dept Econ & Social Stat, D-50923 Cologne, Germany
关键词
Levy copula; Vine copula; Pair Levy copula construction; Multivariate Levy processes; GAMMA; JUMPS;
D O I
10.1016/j.jmva.2013.04.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Levy copulas are the most general concept to capture jump dependence in multivariate Levy processes. They translate the intuition and many features of the copula concept into a time series setting. A challenge faced by both, distributional and Levy copulas, is to find flexible but still applicable models for higher dimensions. To overcome this problem, the concept of pair-copula constructions has been successfully applied to distributional copulas. In this paper, we develop the pair Levy copula construction (PLCC). Similar to pair constructions of distributional copulas, the pair construction of a d-dimensional Levy copula consists of d(d 1)/2 bivariate dependence functions. We show that only d 1 of these bivariate functions are Levy copulas, whereas the remaining functions are distributional copulas. Since there are no restrictions concerning the choice of the copulas, the proposed pair construction adds the desired flexibility to Levy copula models. We discuss estimation and simulation in detail and apply the pair construction in a simulation study. To reduce the complexity of the notation, we restrict the presentation to Levy subordinators, i.e., increasing Levy processes. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Univariate conditioning of vine copulas
    Jaworski, Piotr
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 138 : 89 - 103
  • [2] Statistical arbitrage with vine copulas
    Stuebinger, Johannes
    Mangold, Benedikt
    Krauss, Christopher
    [J]. QUANTITATIVE FINANCE, 2018, 18 (11) : 1831 - 1849
  • [3] Quadratic constructions of copulas
    Kolesarova, Anna
    Mayor, Gaspar
    Mesiar, Radko
    [J]. INFORMATION SCIENCES, 2015, 310 : 69 - 76
  • [4] On Quadratic Constructions of Copulas
    Kolesarova, Anna
    [J]. AGGREGATION FUNCTIONS IN THEORY AND IN PRACTISE, 2013, 228 : 23 - 27
  • [5] Levy-frailty copulas
    Mai, Jan-Frederik
    Scherer, Matthias
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (07) : 1567 - 1585
  • [6] Tail dependence functions and vine copulas
    Joe, Harry
    Li, Haijun
    Nikoloulopoulos, Aristidis K.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (01) : 252 - 270
  • [7] Factor copulas through a vine structure
    Giorgia, Rivieccio
    [J]. ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2015, 8 (02) : 246 - 266
  • [8] Smooth nonparametric Bernstein vine copulas
    Scheffer, Marcus
    Weiss, Gregor N. F.
    [J]. QUANTITATIVE FINANCE, 2017, 17 (01) : 139 - 156
  • [9] Orthogonal grid constructions of copulas
    De Baets, B.
    De Meyer, H.
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (06) : 1053 - 1062
  • [10] Systemic Risk Modeling with Levy Copulas
    Liu, Yuhao
    Djuric, Petar M.
    Kim, Young Shin
    Rachev, Svetlozar T.
    Glimm, James
    [J]. JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2021, 14 (06)