A predictor-corrector algorithm for QSDP combining Dikin-type and Newton centering steps

被引:25
|
作者
Nie, JW [1 ]
Yuan, YX [1 ]
机构
[1] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci & Engn Comp, Beijing 100080, Peoples R China
关键词
semi-definite programming; quadratic term; potential function; central path; predictor step; corrector step; Dikin-type step; Newton centering step;
D O I
10.1023/A:1012994820412
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Recently, we have extended SDP by adding a quadratic term in the objective function and give a potential reduction algorithm using NT directions. This paper presents a predictor-corrector algorithm using both Dikin-type and Newton centering steps and studies properties of Dikin-type step. In this algorithm, when the condition K(XS) is less than a given number K-0, we use Dikin-type step. Otherwise, Newton centering step is taken. In both cases, step-length is determined by line search. We show that at,least a constant reduction in the potential function is guaranteed. Moreover the algorithm is proved to terminate in O(rootn log(1/epsilon)) steps. In the end of this paper, we discuss how to compute search direction (DeltaX, DeltaS) using the conjugate gradient method.
引用
收藏
页码:115 / 133
页数:19
相关论文
共 50 条
  • [1] A Predictor–Corrector Algorithm for QSDP Combining Dikin-Type and Newton Centering Steps
    Jia-Wang Nie
    Ya-Xiang Yuan
    Annals of Operations Research, 2001, 103 : 115 - 133
  • [2] Predictor-corrector improvement of Newton method
    Lü, Wei
    Sui, Rui-Rui
    Feng, En-Min
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2015, 32 (12): : 1620 - 1626
  • [3] Improved Predictor-Corrector Algorithm
    Pazira, Hassan
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2018, 2020, 11925 : 99 - 106
  • [4] AN EFFICIENT PREDICTOR-CORRECTOR ALGORITHM
    WESTREICH, D
    COMPUTER JOURNAL, 1980, 23 (02): : 186 - 186
  • [5] A predictor-corrector algorithm for linear optimization based on a modified Newton direction
    Xu Y.
    Zhang L.
    Jin Z.
    Journal of Applied Mathematics and Computing, 2012, 40 (1-2) : 73 - 86
  • [6] Mehrotra-type predictor-corrector algorithm revisited
    Salahi, Maziar
    Terlaky, Tamas
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (02): : 259 - 273
  • [7] Certified predictor-corrector tracking for Newton homotopies
    Hauenstein, Jonathan D.
    Liddell, Alan C., Jr.
    JOURNAL OF SYMBOLIC COMPUTATION, 2016, 74 : 239 - 254
  • [8] On the Complexity of a Mehrotra-Type Predictor-Corrector Algorithm
    Teixeira, Ana Paula
    Almeida, Regina
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2012, PT III, 2012, 7335 : 17 - 29
  • [9] The predictor-corrector algorithm for hourglass control
    Sun, Zhiyuan
    Liu, Jun
    Wang, Pei
    COMPUTERS & FLUIDS, 2020, 209 (209)
  • [10] A finite termination Mehrotra-type predictor-corrector algorithm
    Salahi, Maziar
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (02) : 1740 - 1746