MOTION PREDICTION WITH GAUSSIAN PROCESS DYNAMICAL MODELS

被引:0
|
作者
Qu, Shi [1 ]
Wu, Lingda [1 ]
Wei, Yingmei
Yu, Ronghuan [1 ]
机构
[1] NUDT, Informat Syst Engn Key Lab, Changsha, Hunan, Peoples R China
关键词
Gaussian process; Kernel function; Markov chain; Motion prediction;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Propose a motion prediction technique based on Gaussian process dynamical models, which maps the existing motion to a low-dimensional latent space by nonlinear method and models the dynamics of motion with Markov chain in latent space. After this, a smooth latent trajectory is obtained corresponding to the motion. Then, predict the future latent states follow the tail end of latent trajectory to obtain a new one. Finally, map this new latent trajectory back to observation space to implement motion prediction. The new motion frames by prediction follow the motion rule of existing motion. Experiment shows that our method can automatically synthesize longer motion by prediction with existing motion.
引用
收藏
页码:162 / 165
页数:4
相关论文
共 50 条
  • [1] Gaussian process dynamical models for human motion
    Wang, Jack M.
    Fleet, David J.
    Hertzmann, Aaron
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (02) : 283 - 298
  • [2] Prediction With Approximated Gaussian Process Dynamical Models
    Beckers, Thomas
    Hirche, Sandra
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (12) : 6460 - 6473
  • [3] Motion optimization using Gaussian process dynamical models
    Kang, Hyuk
    Park, F. C.
    [J]. MULTIBODY SYSTEM DYNAMICS, 2015, 34 (04) : 307 - 325
  • [4] Motion optimization using Gaussian process dynamical models
    Hyuk Kang
    F. C. Park
    [J]. Multibody System Dynamics, 2015, 34 : 307 - 325
  • [5] Revisiting Gaussian Process Dynamical Models
    Zhao, Jing
    Sun, Shiliang
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 1047 - 1053
  • [6] High-Order Gaussian Process Dynamical Models for Traffic Flow Prediction
    Zhao, Jing
    Sun, Shiliang
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (07) : 2014 - 2019
  • [7] Gaussian process dynamical models for human motion (vol 30, pg 283, 2008)
    Wang, Jack M.
    Fleet, David J.
    Hertzmann, Aaron
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (06) : 1118 - 1118
  • [8] Gaussian Process Dynamical Models for Emotion Recognition
    Garcia, Hernan F.
    Alvarez, Mauricio A.
    Orozco, Alvaro
    [J]. ADVANCES IN VISUAL COMPUTING (ISVC 2014), PT II, 2014, 8888 : 799 - 808
  • [9] Human Motion Tracking with Monocular Video by Introducing a Graph Structure into Gaussian Process Dynamical Models
    Xu, Jianfeng
    Takagi, Koichi
    Sakazawa, Shigeyuki
    [J]. ADVANCES IN IMAGE AND VIDEO TECHNOLOGY, PT I, 2011, 7087 : 370 - 383
  • [10] Gaussian Process Dynamical Models over Dual Quaternions
    Lang, Muriel
    Kleinsteuber, Martin
    Dunkley, Oliver
    Hirche, Sandra
    [J]. 2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 2847 - 2852